PHILPS

COMPONENTS AND MATERIALS CATALOGUE

1966

INDUSTRIAL COMPONENTS AND MATERIALS DIVISION

BUILDING BRICKS

Electronic subassemblies for radio and television
A

Electronic subassemblies for professional applications

COMPONENTS

Fixed capacitors
C

Variable capacitors

Linear and non-linear resistors
E

Miscellaneous

MATERIALS
Soft magnetic materials

Hard magnetic materials

A detailed list of contents can be found on the third page of each section

The information given in this publication does not imply a licence under any patent

INTRODUCTION

This 1966 edition is a completely revised and enlarged version of the preceding one, containing data on all our products. For a number of these products, separate booklets are available giving all necessary information and replacing the previous 'EP catalogue sheets'.
Generally, the type numbers indicate preferred types; however, the fact that a certain type is entered in this book does not necessarily imply its immediate availability.
As our research and development departments are engaged on continually perfecting our components and materials, the specification of a certain product may be found to have improved during the currency of this book.
We are sure that this book will be a useful guide to all who want to make a quick and correct choice from the great variety of products that we offer to the electronic industry, products that form the basis of the economic manufacture and maintenance of highly reliable electrical and electronic equipment

A

Antenna rods and plates G11
Audio transformers F 66
C
Capacitors C1
Capacitors, Air, concentric trimmer D24
-, correcting D23
-, tuning D20
—, trimmer D26
Capacitors, Ceramic, barrier layer C130
-, class I, II, miniature feed-through C134
—, class IB, high-voltage disc C117
-, class IB, plate C122
-, class IB, tubular C114
—, class II, pin-up C126
-, class II, plate C128
-, class II, tubular C124
—, safety tubular C132
—, tubular triple by-pass C137
Capacitors, Electrolytic, aluminium C46
-, general purpose, large C16
-, general purpose, miniature C4
-, general purpose, small C12
-, high voltage. C36
-, high voltage, screw-base C34
-, high and low voltage C22
-, long-life C38
-, tantalum C50
-, wet tantalum C56
Capacitors, Mica, balancing telephone cable C102
—, moulded midget C97
-, moulded precision C99
Capacitors, Paper, alternating current C86
—, box type C87
-, interference suppression C86
-, power-factor correction C95
—, special types C94
Capacitors, Paper, direct current C70
-, box type telephony C76
-, box type rectangular C77
-, high-voltage smoothing C80
—, high-voltage insulated C83
—, high-voltage tubular C74
-, interference suppression C85
--, tubular aluminium casing C72
—, tubular insulated C70
Capacitors, Polyester, metallised flat- foil C60
—, metallised moulded C62
—, tubular foil C64
Capacitors, Polystyrene, balancing tele- phone cable C105
—, box cype C110
-, tubular moulded type C107
RC combinations C138
Tuning synthetic foil D4
Trimmers, tubular D14
—, tubular midget D15
-, tubular printed wiring D16
-, wire-wound D18
Circuit blocks 100-series B 4
-, decade counter B 15
—, emitter follower/inverter amplifier B13
—, flip-flops B6
-, one-shot multivibrator B 5
-, power amplifier B14
-, pulse driver B 9
-, pulse generator B19
-, pulse shaper B 9
-, read amplifier B 18
-, reversible shift register B 17
-, selection gate B 20
—, twin decade counter B16
-, twin emitter follower B 12
--, twin gates B 10
-, twin inverter amplifiers B 13
-, twin pulse logic B 11
-, twin selection switch B 20
Circuit blocks 10 series B 26
—, flip-flop B 30
-, non-inverting gate amplifier. B 29
—, one-shot multivibrator B 36
-, power amplifier B 40
-, pulse driver B 38
—, pulse shaper B 39
-, quadruple trigger gate B 35
-, relay driver B 40
-, timer unit B 37
--., twin gate inverter B 28
—, twin trigger gates B 33
Circuit blocks 20 series B 45
—, flip-flop B 49
-, one-shot multivibrator B 52
--, pulse shaper B 53
-, twin gate inverter B 46
-, twin level restorer B 54
-, twin line driver B 55
—, twin trigger gate B 51
Circulators, four-port B 106
-, three-port coaxial B 105
—, waveguide B 106
Coils for radio, miniature, $A M$, tube sets F 36
-, miniature, FM, tube sets F 37
-, ratio detector, FM F 38
-, subminiature, AM, transistorised sets F 40
—, subminiature, $A M / F M$, transitorised F 40
-, subminiature, FM, transistorisedF 40
—, subminiature, RF/IF, AM, module type F 42
Connecting blocks F 13
Control knobs F 15
Cores, cross-cores G56
-, cup-cores G15
-, E and I cores G46
—, potcores H-series G64
—, potcores P-series G25
—, potcores S-series G62
-, screw cores G15
—, U-cores for line-output transformers G21
Counting units B 67

D

Damping beads G20
Decade counter. B 15
Decade switch B 101
Deflection components for TV A14
Deflection components for colour TV A30
Deflection system for $19^{\prime \prime}$ transistorised sets A 29
Deflection units A19
Delay lines, ultrasonic B 111
Delay module B 112
E
E and I cores G46
EHT rectifier socket. A26
Electrolytic capacitors C2
Electronic subassemblies for radio and television A1
F
Ferrite isolators B 103
Ferrite recording heads B113
Ferroxcube 3 and 4 G4
Ferroxcube 6 (square loop) G70
Ferroxcube 7 G71
Ferroxdure, anisotropic H9
-, ring magnets H15
-, rings, segments H18
-, slugs and dises. H17
-, square magnets H16
Ferroxdure, isotropic H19
—, blocks H22
—, rings H20
—, segments H23
Ferroxplana G75
Fixed capacitors G1
Frame output transformers A25

G

Glass-to-metal seals F 19
H
Hard magnetic materials H1
I
Inductance adjustors, continuous ... G34
L
LDR, Light-dependent resistors. E 88
Linearity control units A17
Linear resistors E 1
Line output transformers A14
Loudspeakers. F 37
—, high-quality types F 90
—, midget types F 52
-, special types F 85
—, standard types F 60
-, woofer type. F 96
M
Magnetic memory cores B 69
Magnetic core memories B 88
Main transformers E 70
Matrix planes and stacks, for coincident current memories. B 75
-, with 80 mil cores B 76
—, with 50 mil cores B 77
—, with 30 mil cores B 82
Mica capacitors C97
Microwave components B108
Microwave units B103
Miniature polarised relay F 35
Miscellaneous. F 1
Mounting aids and accessories, 100 series B 22
—, 10 series B43
N
Negative-temperature-coefficient thermistors, indirectly heated E 42
-, miniature E 50
-, mounted disc E 48
-, special motor cars E 60
-, special radio and TV F 61
—, standard disc E 42
—, standard rod F 46
Norbits, double high power B 58
—, double NOR B 63
-, emitter follower B 58
-, low power amplifier B 63
-, medium power output B 61
-, mounting chassis B 61
-, photoelectric detector head B 62
-, single binary counter B 60
-, single NOR B 58
-, timer unit B 63
-, triple binary counter B 59
P
Paper capacitors C70
Peltier batteries H33
Piezo-electric ceramic H40
Plugs and sockets, screened F 22
Polarised relays, miniature F 35
Polyester capacitors C60
Polystyrene capacitors C105
Positive-temperature-coefficient thermistors, special E 76
-, standard disc E 70
Pot cores, H-series G64
—, P-series. G25
—. S-series G62
Potentiometers, carbon trimming E 22
-, single carbon E 26
-, tandem carbon E 32
-, twin carbon E 34
-, wire-wound E 35
Powder iron G76
Power supply units, transistorised B 99
-, universal modular B 100
Printed-wiring connectors F 4
Professional ferrite recording heads B114

R

Receiver inset B109
Recorder, piece parts for G24
Relay, miniature polarised F 35
Resistors, carbon E 4
-, carbon with tangential leads E 7
-, high-stability carbon E 9
-, insulated carbon E 6
-, insulated pin-head E 8
-, moulded metal-film E 10
-, stand-up carbon E 7
-, wire-wound E 11
—, LDR E 88
-, NTC E 42
-, PTC E 76
一, VDR E 86
T
Toroids G68
"Ticonal", anisotropic H26
-, blocks H29
—, rods and rings H28
-, slugs H27
-, special types H29
Transducer, ultrasonic G71
Transformers, audio F 66
—, frame output A 25
-, line output A14
—, main F 106
—, variable F 107
Transmitter inset B 110
Tube sockets F 24
Tuners, FM for radio A4
-, UHF for TV A10
—, VHF for TV A10
U
Ultrasonic delay lines B 111
Ultrasonic transducer G71
U-cores G21
V
Vane switched oscillator B 65
Variable capacitors D1
Variable transformers F 71
Voltage-dependent resistors, asymme- tric E 86
—, small disc E 84
—, special disc E 85
-, standard disc E 77
-, standard rod E 83
Y
Yoke rings G18

Electronic subassemblies for radio and television

FM tuners for radio: tube types; transistor type A4
VHF tuners for television bands I and III: tube type
Turret types AT7638, AT7639, AT7640 and AT7641 A5
Small turret type AT7650 A6
Small turret type AT7650T, AT7651T and AT7652T A8
UHF tuners for television bands IV and V
Small version with tubes, type AT6354 A10
Small version with transistors, type AT6370 A11
Small version with transistors, type AT6380 and AT6381 A12
Push-button version, type AT6385 A13
Deflection components for television
Line output transformer 525/625 lines, type AT2025 A14
Line output transformer 525/625 lines, type AT2023/01 A16
Adjustable linearity control, type AT4032 A17
Adjustable linearity control, type AT4034 A18
Deflection unit, type AT1011 A19
Deflection unit, type AT1019 A21
Deflection unit, type AT1030 A23
Frame output transformer 525/625 lines, type AT3507 A25
Accessories A26
For 11 inch "Tinyvision" transistor and tube receivers A27
Deflection system for transistorised receivers A29
Deflection components for colour television A30

	tube types			transistor type
	AP2110/03	$\begin{aligned} & \text { AP2110/01 } \\ & \text { AP2110/02 } \end{aligned}$	AP2138	AP2150/00
wave range Mc/s	87-104.01	87-108.5 ${ }^{2}$	87-108.5 ${ }^{2}$	87.0-104.5
padding deviation Mc/s	0.5	≤ 0.5	0.5	0.5
total gain	$125 \times$	$90 \times$	$90 \times$	4-6x
IF frequency Mc/s	10.7	10.7	10.7	10.7
IF bandwidth (3dB) kc/s	180-220	180-220	180-220	min. 200
max. frequency drift kc/s	30	30	30	300^{3}
radiation: fundamental oscillation $\mu \mathrm{V} / \mathrm{m}$	1504	150^{4}	1000^{5}	1000^{5}
second harmonic $\mu \mathrm{V} / \mathrm{m}$	20^{4}	20^{4}	3005	$300{ }^{5}$

AP 2110/02: AFC $70-130 \mathrm{kc} / \mathrm{s}$ per $\mathrm{V}:$ AFC bias 9 V
AP 2138: \quad GGC at -8 V : the gain is at least $20 \times$ lower

[^0]
TYPE AT7638, AT7639, AT7640, AT7641

This turret type tuner has been developed for reception of television signals in bands 1 and III ($41-68 \mathrm{Mc} / \mathrm{s}$ and $174-223 \mathrm{Mc} / \mathrm{s}$ resp.) The standard CCIR tuner has 10 channels with printed coil strips. During manufacture it is possible to replace these by any desired range of channels. When a special transmitter must be received, there is the possibility of inserting this particular channel, e.g. channel 2a for Austria or OIR2 for Finland, etc. For this purpose, the turret has two spare positions.

Not to be used for first equipment design.

The tuner is provided with the low-noise tube PCC189 operating as an RF cascode amplifier with excellent cross-performance. In the oscillator and mixer stage a PCF86 is used. Due to the high mutual conductance of the pentode section of the PCF86, the IF gain is increased by about a factor of 2, the total overall gain of the tuner now being 40 dB .

TYPE AT7639, AT7641 (WITH CASCADE SWITCH)

TYPE AT7650

This very small VHF tuner has a 13 -position turret switch equipped with $10 \mathrm{VHF}-\mathrm{CCIR}$ channel strips (channels 2-11), covering the frequency bands I and III ($41-68 \mathrm{Mc} / \mathrm{s}$ and $174-223 \mathrm{Mc} / \mathrm{s}$ resp.)
The tuner has a memo-matic system which can be adjusted to each individual channel.
The tubes used are type PC900 (RF stage) and type PCF801 (oscillator/mixer). Due to a careful design this tuner meets the German Post Office requirements as regards radiation.
Life tests carried out on the reset stability revealed that $\triangle f_{\text {osc }}<150 \mathrm{kc} / \mathrm{s}$ when the tuner is switched from one channel to another and back again.
Provision is made for UHF-IF injection on the grid of the mixer pentode. The influence of this circuit on the shape of the RF bandpass curve is negligible. The gain is approximately 50 times (for a 3dB IF bandwidth of $6 \mathrm{Mc} / \mathrm{s}$).

AT7650T, AT7651T and AT7652T

These transistorized VHF tuners have a 13-position turret switch equipped with up to $11 \mathrm{VHF}-\mathrm{CCIR}$ channel strips (channels 2-12), covering the frequency bands I and III ($41-68 \mathrm{Mc} / \mathrm{s}$ and 174-223 Mc / s). The tuners have the same memomatic system as used in the VHF tuner AT7650; each individual channel can be adjusted. The RF stage is equipped with a transistor AF180; the mixer and the oscillator are both equipped with an AF178. Forward AGC can be applied to the RF stage; a gain reduction of approximately 40 dB can thus be obtained.

Differences between the types:
AT7650T has no VHF-bridge in circuit.
AT7651T and AT7652T are equipped with a UHF-bridge in circuit (extra IF gain approximately 10 dB). The total gain from the antenna to the first IF amplifier exceeds 26 dB at 3 dB IF bandwidth of $6.5 \mathrm{M} / \mathrm{s}$ and is flat within 5%.

UHF TUNERS FOR TV

TYPE AT6354

This tuner has been developed for the reception of television signals in bands IV and $V(470-862 \mathrm{Mc} / \mathrm{s})$. Standard CCIR-IF frequency: sound $33.4 \mathrm{Mc} / \mathrm{s}$, picture carrier $38.9 \mathrm{Mc} / \mathrm{s}$.
The RF stage is equipped with a PC88 in groundedgrid circuit; the oscillator/mixer employs a PC86. The gain is approximately 10 dB (for a 3 dB IF bandwidth of $6 \mathrm{Mc} / \mathrm{s}$).

UHF TUNERS FOR TV

TYPE AT6370

This tuner is a transistorized version of type AT6354. The gain is approximately 14 dB (at a 3 dB bandwidth of $6 \mathrm{Mc} / \mathrm{s}$).

UHF TUNERS FOR TV

TYPE AT6380 AND AT6381

This tuner, which is continuously tunable, has been developed for the reception of television signals in bands IV and V (470-890 Mc/s).
The tuner should preferably be provided with a gearing to obtain a total ratio of about $1: 40$.
The maximum permissible axial torque on the tuner spindle is $7 \mathrm{~kg} . \mathrm{cm}$. The gain is approximately 14 dB (for a 3 dB bandwidth of $6 \mathrm{Mc} / \mathrm{s}$).
These two types of tuner are electrically identical, the mere difference being that the resistors of tuner AT6381 are mounted on a printed-wiring board. The figure shows both the printed-wiring board on rop of tuner AT6381 and the terminals on top of tuner AT6380.

TYPE AT 6380 AND AT6381

TYPE AT6385

This tuner is the push-button version of the AT6380 and AT6381 types.
Tuner type AT6386 differs from type AT6385 in that the switch for the B+voltage and AGC-line has been omitted.

DEFLECTION COMPONENTS FOR TV

LINE OUTPUT TRANSFORMER TYPE AT2025

Preferred type for tube sets with either conventional or printed wiring with non-inflammable coils.

AT2025
Fig. 1
Fig. 1a
(supply voltage 240 V) System 525/625 lines
Deflection 110° or 114°
EHT 18 kV stabilized
Deflection unit AT1011, AT1019 or AT1030
Linearity control AT4032 or AT4034 Line output tube PL500
Booster diode PY88
EHT rectifier DY87
VDR resistor E298 GD/A265

Two circuits are shown.
In Fig. 1 the S-correction capacitor C_{8} is connected between the two halves of the secondary. In Fig. 1a C_{s} is connected directly in series with the deflection unit. The advantage of the first circuit is that the booster capacitor C_{13} requires a much lower value.
Moreover, a 90 V - p parabolashaped voltage is available from terminal 3.
The table below gives measured results obtained with a 120 pF ceramic capacitor C_{1} connected between (6) and (3). The capacitance between terminals (1) and (4) is 100 pF .

[^1]A14

DEFLECTION COMPONENTS FOR TV

LINE OUTPUT TRANSFORMER TYPE AT2025

In the design of type AT2025 special attention has been paid to mounting (and dismounting) facilities, Its mounting height is less than that of its predecessor, type AT2023/01.
The transformer can be mounted on metal chassis or on printed-wiring boards. There are four pins and two threaded holes available for the mechanical mounting. The pins can be bent or soldered for fixing the transformer to the chassis.
The electrical connections are made to wire pins which in this design lie in straight lines.

This transformer satisfies the most stringent safety requirements. Both the primary and the EHT coils are made self-extinguishing by a special impregnation technique.

LINE OUTPUT TRANSFORMER TYPE AT2026 AND AT2031/01

Type AT2026 is mechanically identical to type AT2025, but was specially developed for $625 / 819$ lines in multistandard tube sets (EHT 18 kV).

Type AT2031/01 is mechanically identical to type AT2023/01, but was specially developed for $625 / 819$ lines in multistandard tube sets (EHT 17 kV).

DEFLECTION COMPONENTS FOR TV

LINE OUTPUT TRANSFORMER TYPE AT2023/01.

This type of transformer is designed for tube sets and is suitable for both conventional and printed wiring. (It should not be used for new designs.)

System 525/625 lines
EHT 17.5 kV stabilized
Deflection unit AT1011, AT1019 or AT1030
Linearity control AT4032 or AT4034
Line output tube PL500
Booster diode PY88
EHT rectifier DY87

This control unit designed for tube sets consists of a coil located in a biasing field between two ferroxdure ring magnets. To adjust the linearity, a ferroxcube core can be moved axially in the coil and magnetic rings, thus controlling the degree of saturation of the inductance. The ferroxcube core has been provided with an insulating grip and is held in position by means of a siliconrubber ring.

The unit has been designed for use in combination with deflection unit AT1011 and line output transformer AT2023 or AT2025.

The unit can be mounted either on printedwiring boards, by means of its connecting pins, or on conventional panels, by means of two screws through the holes in the pads.

DEFLECTION COMPONENTS FOR TV

ADJUSTABLE LINEARITY CONTROL TYPE AT4034

This unit is designed for use in TV sets equipped with tubes, to adjust the linearity of the line deflection. It can be used in combination with deflection unit AT1011, AT1019 or AT1030 and line output transformer AT2023/01, AT2025, AT2026 or AT2031/01.

A18

The control unit consists of a coil wound on a ferroxcube rod, and two ferroxdure magnets. One of these magnets had the shape of a half ring placed around the ferroxcube rod under the coil. The second magnet is cylindrical and is positioned parallel to and clamped against the ferroxcube rod opposite the first one. It is provided with a square hole to facilitate turning of the magnet to adjust the biasing field and so the linearity of the line deflection.

Mounting

The unit can be mounted both on printed-wiring boards, by means of its two connecting pins and two mounting pins, and on conventional panels, by bending of the two mounting pins and/or by means of a screw through an aperture in the casing. To prevent distortion of the magnetic field, any iron parts should be at a distance of at least 3 mm from the magnetic parts. The coil should be shunted with a 1 W carbon resistor of 1500Ω to damp ringing phenomena.

Hole pattern for mounting on a printedwiring board

* hole only necessary for bottom adjustment.

This deflection unit is designed for tube receivers; it can be used for $19^{\prime \prime}$ and $23^{\prime \prime} 110^{\circ}$ rectangular picture tubes. The windings of the coils of the unit have been constructed so as to minimize raster distortion on the screen of a $19^{\prime \prime}$ or $23^{\prime \prime}$ rectangular tube. This unit offers several possibilities for fine adjustment of the raster shape, but for the convenience of the setmakers it is adjusted before delivery for optimum raster shape on an average picture tube. The various adjustments, summarized below, are achieved by:

1. Two sliding magnets for the compensation of horizontal pin-cushion distortion, i.e. for straightening the upper and lower sides of the raster.
2. Two adjustable cylindrical magnets for the compensation of vertical pin-cushion distortion, i.e. for straightening the left- and righthand sides of the raster. These magnets are diagonally magnetised and can be turned between pole shoes for the correct magnetic field distribution. The adjustment is marked with paint.
3. The pole shoes are also adjustable, that is to say, they slide on the cap of the deflection unit. This adjustment allows compensation of certain non-symmetric errors (trapezium distortion).
The pole shoes are adjusted before delivery for optimum raster shape on a test tube; this position is indicated by a dot.
4. Small rubber magnets can be attached to the pole shoes. These flat square magnets are provided with a hole in the centre which fits the lips of the pole shoes that are bent outward. By turning these magnets the shape of the corners of the rasters can be adjusted. They are supplied separately under type number AT7114.
5. Centring magnets for centring the raster on the picture tube face.

DEFLECTION COMPONENTS FOR TV

DEFLECTION UNIT TYPE AT1011

	frame coils	$\begin{aligned} & v \\ & i \end{aligned}$	line coils	
inductance resistance deflection current (peak-to-peak) at 18 kV for a deviation of.	82 mH $48 \Omega^{1}$ 455 mA 380 mm		$\begin{aligned} & 2.9 \mathrm{mH} \\ & 4.6 \Omega \\ & 2.2 \mathrm{~A} \\ & 500 \mathrm{~mm} \end{aligned}$	

${ }^{1}$ Including NTC-resistor R.

The component parts of the deflection unit are embedded in polyester resin. The horizontal and vertical coils are adjusted for minimum coupling before being embedded, so that the "cross talk" from line to frame coils is kept to a minimum.
The picture height must remain constant even in frame-output circuits with voltage feedback. For this purpose, an NTC-resistor is connected in series with the frame coils. For optimum heat transfer this resistor is contained in the same casting as the frame coils. So the coils and the NTC-resistor have practically the same temperature under all conditions which is especially important during the warmup period.
If a frame-output circuit with current feedback is used, the NTC-resistor can be left out by using the soldering tag V between frame coil and NTC-resistor.

This unit, designed for tube receivers, is electrically identical to deflection unit AT1011

The windings of the coils of deflection unit type AT1019 have been designed for minimum raster distortion on the screen of a $19^{\prime \prime}$ and $23^{\prime \prime}$ rectangular tube. In addition, this unit offers several possibilities for fine adjustment of the raster shape. The various adjustments, summarized below, are achieved by:

1. Two plastoferrite rod magnets for the compensation of horizontal pin-cushion distortion, i.e.for straightening the upper and lower sides of the raster. (Mounted inside the rim.)
2. Two adjustable cylindrical magnets for the compensation of vertical pin-cushion distortion, i.e. for straightening the left- and right hand sides of the raster. These magnets are diagonally magnetised and can be turned between pole shoes for the correct magnetic field distribution.
3. The pole shoes are also adjustable, that is to say, they slide in a groove of the rim of the deflection unit. This adjustment allows compensation of certain non-symmerric errors (trapezium distortion).
4. Small rubber magnets can be attached to the rim. These flat square magnets are provided with a hole in the centre which fits the pins on the rim. By turning these magnets the shape of the corners of the rasters can be adjusted. They are supplied separately.
5. Centring magnets for centring the raster on the picture tube face.

DEFLECTION COMPONENTS FOR TV

DEFLECTION UNIT TYPE AT1019

	frame coils	$\begin{aligned} & V \\ & 6(6) \\ & 6 \end{aligned}$	line coils	H
inductance	82 mH	$-C$	2.9 mH	
resistance	48 S1		4.6Ω	
deflection current (peak-to-peak)	455 mA	$\underset{\rightarrow R}{N T C} \underset{\rightarrow\}^{-1}}{ }$	2.2 A	
at 18 kV for a deviation of *	380 mm	$\stackrel{\&}{R}(8 a)$ frame coils	500 mm	line corls

${ }^{1}$ including NTC-resistor.

DEFLECTION UNIT TYPE AT1030

This deflection unit is designed for tube receivers; it can be used for $19^{\prime \prime}$ and $23^{\prime \prime} 110^{\circ}$ rectangular picture tubes.
The unit offers some possibilities for fine adjustment of the raster shape.
The adjustments, summarised below, are achieved by:

1. Two rod magnets, mounted on brackets, for compensating vertical pin-cushion distortion. Asymetrical pin-cushion distortion can also be corrected to some extent by bending the rod magnets asymmetrically.
2. Small rubber magnets which can be attached to the rim. These flat square magnets are provided with a hole in the centre which fits the pins on the rim. The shape of the corners of the raster can be adjusted by rotating these magnets. They are supplied separately.
3. Two plastic ferrite rod magnets which can be mounted in plastic slips on the rim. These magnets can be used to compensate horizontal (pin-cushion) distortion, i.e. to straighten the upper and lower edges of the raster. Each clip contains two slots of different size to accomodate rods with different diameters. It is also possible to use two plastoferrite rods inside the rim as in Type AT1019. ${ }^{1}$
4. Centring magnets for centring the raster on the picture tube face.
[^2]DEFLECTION COMPONENTS FOR TV

DEFLECTION UNIT TYPE AT1030

DEFLECTION COMPONENTS FOR TV

FRAME OUTPUT TRANSFORMER TYPE AT3507

The core of the transformer consists of two O-shaped yokes, formed by a number of bent laminations, with the coils wound around the two inner legs. The lower part of the transformer is embedded in polyester resin, in which apertures are left for mounting purposes. The maximum height and the relative positions of the apertures are shown in the figure.
The primary winding between the connections a and c is designed for a supply voltage of 220 V , whilst the connections a and b should be used if the supply voltage is 200 V .

FRAME OUTPUT TRANSFORMER 625/819 LINES, TYPE AT3508

The data are identical to those of type AT3507, but an extra winding has been provided for flyback suppression.

DEFLECTION COMPONENTS FOR TV

ACCESSORIES

Screened EHT cable type AT7116 with built-in $220 \mathrm{k} \Omega$ resistor.
Unscreened EHT cable type AT7117, without resistor.

EHT RECTIFIER SOCKET TYPE AT7108 WITH BUILT-IN 1.2Ω RESISTOR Designed for use in tube receivers.

EHT RECTIFIER SOCKET TYPE AT7108/02.

Designed for use in transistorized receivers.
This type number covers:

EHT cable AT7116

Rectifier socket AT7108

DEFLECTION COMPONENTS FOR TV

FOR 11 INCH "TINYVISION" TRANSISTOR AND TUBE RECEIVERS

(These components are designed around picture tube A28-13W).
Two sets of components are available, one for tube receivers and one for transistorised receivers. They differ merely in the winding data.

A. For tube receivers the set comprises:

Deflection unit AT1021/01
Line output transformer AT2043
Linearity control unit AT4037
The essential data of the deflection unit are given below. To achieve temperature compensation, an NTC-resistor (cold resistance 32Ω) shunted by a 12Ω carbon resistor, is connected in series with the 30Ω frame coils. In this way the total effective resistance (about 38Ω) remains substantially constant over a wide temperature range.

AT1021/01	Line coils	Frame coils
Inductance	1.7 mH	42 mH
Resistance	3.6Ω	38Ω
Sensitivity	$108 \mu \mathrm{~V} / \mathrm{cm}$	$9 \mathrm{~mW} / \mathrm{cm}^{2}$

The design of the line output transformer AT2043 is based on the use of the tubes PL81, PY81 or DY51 (or a semiconductor diode). The nominal supply voltage is $240 \mathrm{~V}_{\mathrm{dc}}$; the transformer has to be used with VDR-stabiliser E298 GD/A265 in order to keep the anode voltage of the PL81 well above the knee so as to prevent the occurrence of Barkhausen oscillations.

Further data

EHT voltage (no load). . . . 11 kV
Booster voltage $240+440=680 \mathrm{~V}$
Flyback time 17.5 \%
Average current $32 \mathrm{~mA}(38 \mathrm{~mA}$ with DY51)
Overscan $+5 \%$
Extra windings a. $7-8$ for heater supply of the picture tube: $11 \mathrm{~V}_{\text {rms }}$ (or $38 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) b. 5-6: $28 \mathrm{~V}_{\mathrm{p} \text {-p }}$ for power supply of transistors in hybrid sets

DEFLECTION COMPONENTS FOR TV

FOR 11 INCH "TINYVISION" TRANSISTOR AND TUBE RECEIVERS

(These components are designed around picture tube A28-13W).
B. For transistorized receivers the set comprises:

Deflection unit AT1020/01
Line output transformer AT2042
Linearity control AT403s
The essential data of deflection unit type AT1020 are given below. The AT1020 has separate connections for both frame coils. Thus it is possible to connect them in series (30Ω) or in parallel (7.5Ω).

AT1020/01	Line coils	Frame coils
Inductance	$81 \mu \mathrm{H}$	42 mH
Resistance	0.15Ω	$30 / 7.5 \Omega$
Sensitivity	$23 \mu \mathrm{M} / \mathrm{cm}$	$9 \mathrm{~mW} / \mathrm{cm}^{2}$

The design of the line output transformer AT2042 is based on the use of the line output transistor AU103, the parallel diode BY118 and the EHT rectifier DY51 (or a semiconductor diode). The stabilized supply voltage is 11 V .

Further data:

EHT voltage (no load) 11 kV
Current 0.52 A
Flyback time 17.5%
Overscan $+5 \%$
The data were, measured at a load of 0.9 W on the extra winding and including 0.77 W heater power for the DY51.).

More details on request.

DEFLECTION COMPONENTS FOR TV

DEFLECTION SYSTEM FOR TRANSISTORISED RECEIVERS

Line output transformer AT2038

Linearity control AT4035

Deflection unit
AT1018

General design considerations

These deflection components have been designed for transistorised full-performance mains receivers having the additional feature that a 12 V battery can also be used for the power supply.

System	525/625 lines
Picture tube	19 inch
Deflection angle	110 degrees (or 114)
Extra high tension .	16 kV
Flyback time	19.5 \%
Line output transistor	AU104
Driver transistor	AC128
Booster diode	BY118
Parallel diode	BY118
EHT diode	DY87
Deflection unit .	AT1018
Line output transformer	AT2038
Linearity control	AT4035
EHT socket	AT7108/02

More details on request

DEFLECTION COMPONENTS FOR COLOUR TV

90° RECTANGULAR TUBES

From 1.8.'65 on the package comprises the following components:

AT1022/01	Deflection unit
AT1023/01	Convergence unit
AT1025/01	Blue lateral convergence unit
AT2044/01	Line output transformer complete with EHT rectifier socket and cables
AT3512/01	Vertical output transformer
AT4041/01	Transductor for raster correction
AT4042/01	Linearity control

Set of adjustable coils for convergence adjustment:
AT4040/01
R/G par. bal.
106 B par.
107 B correction
/08 R/C par.
/10 For raster correction
More details on request.

MEMORY CORES
MICROWAVE UNITS
MISCELLANEOUS

Electronic subassemblies for professional applications

\square

H

Circuit blocks B4
100 series B4
10 series B26
20 series B45
Norbits for industrial control B57
Vane-switched oscillator B65
Angular displacement transducer PE 2270 B66
Counting units for programmed control B67
Magnetic memory cores B69
Matrix planes and stacks B74
with 80 mil cores B76
with 50 mil cores B77
with 30 mil cores B82
with 20 mil cores B84
Platrices B86
Complete magnetic core memories B88
Mounting aids B96
Transistorised power supply units B98
Universal modular power supplies. B100
Decade switches B101
Microwave units B103
Ferrite isolators B103
Coaxial circulators B105
Amplifier, $4000 \mathrm{Mc} / \mathrm{s}$ B107
Other microwave components B108
Receiver inset B109
Transmitter inset B110
Ultrasonic delay lines B111
Delay module B112
Ferrite recording heads B113

100 series - CIRCUIT BLOCKS

STANDARD UNITS FOR MEDIUM SPEED (max. frequency $100 \mathrm{kc} / \mathrm{s}$)

Circuit blocks can in general be used in all digital data handling equipment such as for signalling, computing, controlling, measuring and testing, data handling, laboratory uses etc.

A circuit block is a small encapsulated unit containing basic electronic components, designed to accept and operate upon a specific type of input signal and to produce a specific type of electrical output. A number of different blocks can be combined to form larger parts of a reliable electronic digital system. The dimensions of all circuit blocks are approximately $54 \mathrm{~mm} \times 24 \mathrm{~mm} \times 11 \mathrm{~mm}$.
Out of one side of $54 \mathrm{~mm} \times 11 \mathrm{~mm}$ emerge ten wire terminals of 0.7 mm diameter and 15 mm length. The distances between the wires are $5.08 \mathrm{~mm}(0.2 \mathrm{in}$.) in accordance with the I.E.C. standard hole grid for printed-wiring boards. The blocks are colour-coded, a different colour being used for each group of functions.

Composition of the type number:

B8

```
merial number mechanical design m
```


CIRCUIT BLOCKS - 100 series

STANDARD UNITS FOR MEDIUM SPEED (max. frequency 100 kc/s)

Available types

function	colour code	description	type	type number	
memory	red	bi-stable multivibrators (Flip-Flops) with internally connected trigger inputs . with gated trigger inputs	FF1 FF3 ${ }^{1}$ FF2 FF4 ${ }^{1}$	$\begin{aligned} & \text { B8 } 92000 \mathrm{f} \\ & \text { B8 } 92002 \\ & \text { B8 } 92001 \\ & \text { B8 } 92003 \end{aligned}$	$\begin{aligned} & 18, \\ & 20 \\ & 18 \\ & 20 \end{aligned}$
signal generating and pulse shaping	green	monostable (One-Shot) multivibrators pulse shaper. pulse driver.	OS1 OS2 ${ }^{1}$ PS1 PD1	$\begin{aligned} & \text { B8 } 95001 \\ & \text { B8 } 95003 \\ & \text { B8 } 95000 \\ & \text { B8 } 95004 \end{aligned}$	15.7° 23:- 20.35 26,50
$\begin{aligned} & \text { gating } \\ & \text { (AND, OR) } \end{aligned}$	orange	twin 2-input negative gate twin 2 -input positive gate twin 3 -input negative gate twin 3 -input positive gate twin pulse logic trigger inputs for FF1, FF2 twin pulse logic trigger inputs for FF3, FF4 .	$\begin{aligned} & \text { 2.2N1 } \\ & \text { 2.2P1 } \\ & \text { 2.3N1 } \\ & \text { 2.3P1 } \\ & \text { 2.PL1 } \\ & \text { 2.PL2 } \end{aligned}$	B8 93001 B8 93003 B8 93000 B8 93002 B8 93004 B8 93007	8.75 8.15 10.50 11.50 12. -
amplifying and inversion (NOT)	yellow	twin emitter followers twin inverter amplifier twin inverter amplifier emitter follower/inverter amplifier power amplifier	$\begin{aligned} & \text { 2EF1 } \\ & \text { 2EF2 } \\ & \text { 2IA1 } \\ & \text { 2IA2 } \\ & \text { EF1/IA1 } \\ & \text { PA1 } \end{aligned}$	B8 94001 B8 94003 B8 94002 B8 94005 B8 94000 B8 90000	12.90 17.50 13.50 16 , 12,95 30, -
counter and shift register	-	decade counter (1-2-4-2 code $-4 \times$ FF1) . twin decade counter $(1-2-4-8 \text { code }-2 \times 4 \times \text { FF3 })$ reversible shift register or ring counter $(5 \times \text { FF4 }+5 \times 2 . \mathrm{PL} 2)$	DC1 2DCA2 RCA1	B8 85000 B8 85001 B8 85002	$\begin{aligned} & 90,- \\ & 200,- \\ & 200 \end{aligned}$

Available types for ferrite-core memory drive

[^3]
UNITS WITH A MEMORY FUNCTION

FF1 - FLIP-FLOP with internally connected trigger inputs

Type number: B9 92000
Colour: red
The circuit performs a memory function when driven by means of a d.c. level or a positive-going trigger signal (a.c. input signal). It can also be used as a scaler-of-two, driven by a positive-going trigger signal.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $A_{2}=$ a.c. input 2
3. $A_{1}=$ a.c. input 1
4. $W_{2}=$ d.c. input 2
5. $\mathrm{P}_{2}=$ supply +6 V
6. $\mathrm{E}=$ common supply 0 V
7. $\mathrm{P}_{1}=$ supply +6 V
8. $\mathrm{N}=$ supply -6 V
9. $W_{1}=$ d.c. input 1
10. $\mathrm{Q}_{1}=$ output 1

FF3 - FLIP-FLOP with internally connected trigger inputs

Type number B8 92002
 Colour: red

The circuit performs a memory function when driven by means of a d.c. level or a positive-going trigger signal, and it can also be used as a scaler-of-two when the trigger inputs are interconnected.

Terminals:

1. $\mathrm{Q}_{1}=$ output 1
2. $\mathrm{Q}_{2}=$ output 2
3. $\mathrm{A}_{2}=$ trigger input 2
4. $A_{1}=$ trigger input 1
5. $W_{2}=$ d.c. input 2
6. $W_{1}=$ d.c. input 1
7. $\mathrm{K}=$ for external trigger input
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{P}=$ supply +6 V
10. $\mathrm{E}=$ common supply 0 V

Type number: B8920 01

Colour red:
The circuit performs a memory function when driven by means of a d.c. level or a positivegoing voltage step (a.c. input signal). In the case of a.c. drive, the switching of the flip-flop can be controlled by a d.c. Ievel supplied to the built-in gate circuits (e.g. in shift registers).

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{G}_{1}=$ gate input 1
3. $\mathrm{A}=$ a.c.input
4. $\mathrm{W}_{2}=$ d.c. input 2
5. $\mathrm{P}=$ supply +6 V
6. $\mathrm{E}=$ common supply 0 V
7. $W_{1}=$ d.c. input 1
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{G}_{2}=$ gate input 2
10. $Q_{1}=$ output 1

Type number: B8 92003

Colour: red

The circuit performs a memory function when driven by means of a d.c. level or a positivegoing trigger signal. In the case of trigger drive, the switching of the flip-flop can be controlled by a d.c. level applied to the built-in gate circuits (e.g. shift registers).

Terminals:

1. $\mathrm{Q}_{1}=$ output 1
2. $\mathrm{Q}_{2}=$ output 2
3. $\mathrm{G}_{2}=$ gate input 2
4. $G_{1}=$ gate input 1
5. $W_{1}=$ d.c. input 1
6. $W_{2}=$ d.c. input 2
7. $\mathrm{A}=$ trigger input
8. $\mathrm{N}=$ supply -6 V
9. $P=$ supply +6 V
10. $\mathbf{E}=$ common supply OV

UNITS WITH A MEMORY FUNCTION

FLIP-FLOP with gated trigger inputs - FF2

FLIP-FLOP with gated trigger inputs - FF4

UNITS WITH A SIGNAL-GENERATING AND PULSE-SHAPING FUNCTION

OS1 - ONE-SHOT MULTIVIBRATOR

Type number: B8950 01

Colour: green
When a positive-going voltage step is applied to terminal A_{2} of this monostable multivibrator the circuit generates a pulse at the Q -terminals. The duration of the output pulse is determined by the value of the external capacirance between the terminals W_{2} and Q_{1}.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{A}_{2}=$ ac. input 2
3. $W_{2}=$ d.c. input 2
4. $\mathrm{W}_{2}=$ dec. input 2
5. $\mathrm{N}_{2}=$ supply -6 V
6. $\mathrm{E}=$ common supply OV
7. $\mathrm{P}=$ supply +6 V
8. $\mathrm{N}_{1}=$ supply -6 V
9. $W_{1}=$ dec. input 1
10. $\mathrm{Q}_{1}=$ output 1

OS - ONE-SHOT MULTIVIBRATOR

When a positive-going voltage step is applied to terminal A of this monostable multivibrator the circuit generates a pulse at the Q-terminals. The duration of the output pulse is determined by the value of: the external capacitance C between K and L (for pulses longer than the intrinsic value); the external resistance between Q_{1} and W (for pulses shorter than the intrinsic value).

Type number: B8 95003 Colour: green

Terminals:

1. $\mathrm{Q}_{1}=$ output 1
2. $\mathrm{Q}_{2}=$ output 2
3. $W=$ dec. input
4. $\mathrm{K}=$ for external capacitor
5. not connected
6. $\mathrm{L}=$ for external capacitor
7. $\mathrm{A}=$ trigger input
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{P}=$ supply +6 V
10. $\mathbf{E}=$ common supply 0 V

CIRCUIT BLOCKS - $\mathbf{1 0 0}$ series

UNITS WITH A SIGNAL-GENERATING AND PULSE-SHAPING FUNCTION

Type number: B8 95000

Colour: green
A d.c. input signal of a magnitude exceeding the input tripping level of this squaring amplifier andinverter circuit, is re-shaped and inverted into the standard d.c. level at the output. The output voltage transients are very short and can be used for driving other circuit blocks, multivibrator circuits included.

Terminals:

1. $Q=$ output
2. internally connected
3. internally connected
4. $\mathbf{P}=$ supply +6 V
5. $W=$ input
6. not connected

7. $E=$ common supply $O V$
8. not connected
9. internally connected
10. $\mathrm{N}=$ supply -6 V

PULSE DRIVER - PD1
Type number: B8 95004
Colour: green

The unit is mainly designed to operate as a clock source, delivering trigger pulses for a great number of flip-flops FF1, FF2, FF3 and FF4 or as a counter driver.

Terminals:

1. $\mathbf{A}=$ trigger input
2. $\mathbf{G}=$ gate input
3. $\mathrm{K}=$ for external capacitor
4. $W=$ d.c.input
5. $\mathbf{E G}=$ extension gate input
6. $\mathrm{L}=$ for external capacitor
7. $\mathrm{Q}=$ output
8. $N=$ supply -6 V
9. $\mathrm{P}=$ supply +6 V
10. $\mathrm{E}=$ common supply 0 V

100 series - CIRCUIT BLOCKS

UNITS WITH A GATE FUNCTION

TWIN GATES
2.3N1 - THREE NEGATIVE INPUTS

2.2N1 - TWO NEGATIVE INPUTS

Terminals:

1. $\mathrm{N}_{1}=$ supply -6 V
2. $W_{1}=$ input 1
3. $W_{3}=$ input 3
4. $W_{5}=$ input 5
5. $\mathrm{Q}_{1}=$ output 1
6. $\mathrm{Q}_{2}=$ output 2
7. $W_{2}=$ input 2
8. $W_{4}=$ input 4
9. $W_{6}=$ input 6
10. $\mathrm{N}_{2}=$ supply -6 V

Type number: B8 93000

Colour: orange

Type number: BR 93001
Colour: orange

Terminals:

1. $\mathrm{N}_{1}=$ supply -6 V
2. $W_{1}=$ input 1
3. $W_{3}=$ input 3
4. not connected
5. $Q_{1}=$ output 1
6. $\mathrm{Q}_{2}=$ output 2
7. not connected
8. $W_{2}=$ input 2
9. $W_{4}=$ input 4
10. $\mathrm{N}_{2}=$ supply -6 V

The two gates of circuit blocks 2.3 N 1 and 2.2 N 1 are identical.
They can be used separately, or in combination by interconnecting the output terminals Q_{1} and Q_{2}. In this latter case only one negative-supply terminal should be used.

2.3P1 - THREE POSITIVE INPUTS

Terminals:

1. $P_{1}=$ supply +6 V
2. $\mathrm{W}_{1}=$ input 1
3. $W_{3}=$ input 3
4. $W_{\overline{0}}=$ input 5
5. $Q_{1}=$ output 1
6. $Q_{2}=$ output 2
7. $W_{2}=$ input 2

Type number: B8 93002
Colour: orange
8. $W_{4}=$ input 4
9. $W_{6}=$ input 6
10.50
10. $P_{2}=$ supply +6 V
2.2P1 - TWO POSITIVE INPUTS

Terminals:

1. $\mathrm{P}_{1}=$ supply +6 V
2. $W_{1}=$ input 1
3. $W_{3}=$ input 3
4. not connected
5. $\mathrm{Q}_{1}=$ output 1
6. $W_{4}=$ input 2
7. $\mathrm{Q}_{2}=$ output 2
8. $W_{6}=$ input 4
9. not connected
10. $\mathrm{P}_{2}=$ supply +6 V

The two gates of circuit blocks 2.3 P1 and 2.2 P1 are identical.
They can be used separately, or in combination by interconnecting the output terminals Q_{1} and Q_{2}. In this latter case only one positive-supply terminal should be used.

Type number: B8 93004
UNITS WITH A GATE FUNCTION

Colour: orange
The circuits are normally used in conjunction with flip-flop circuits. With the twin pulse logic a second pair of ac. inputs is formed for a flip-flop type FF1, or in combination with flip-flops type FF2 a bidirectional shift register can be made. The twin pulse logic output terminals are to be connected directly to the flip-flop d.c. input terminals for this application.

Terminals

1. $G_{1}=$ gate input 1
2. $\mathrm{V}_{2}=$ reset input 2
3. $A_{1}=$ ac. input 1
4. $A_{2}=$ ac. input 2
5. $\mathrm{Q}_{2}=$ output 2
6. $\mathrm{K}_{2}=$ normally not used
7. $K_{1}=$ normally not used
8. $Q_{1}=$ output 1
9. $\mathrm{V}_{1}=$ reset input 1
10. $\mathrm{G}_{2}=$ gate input 2

Type number: B8 93007
Colour: orange

The circuits are normally used in conjunction with flip-flop circuits. With the twin pulse logic a second pair of ac. inputs is formed for a flip-flop type FF3, or in combinadion with flip-flops type FF4 a bidirectional shift register can be made. The twin pulse logic output terminals are to be connected directly to the flip-flop d.c. input termihals for this application.

Terminals

1. $\mathrm{G}_{1}=$ gate input 1
2. $\mathrm{G}_{2}=$ gate input 2
3. $\mathrm{K}_{1}=$ for external gate input
4. $\mathrm{K}_{2}=$ for external gate input
5. $\mathrm{Q}_{2}=$ output 2
6. $Q_{1}=$ output 1
7. $A_{1}=$ trigger input 1
8. $\mathbf{A}_{2}=$ tripper input 2
9. $\mathrm{N}=$ supply -6 V
10. not connected

UNITS WITH AN AMPLIFYING FUNCTION

2EF1 - TWIN EMITTER FOLLOWER

Type number: B8 94001

Colour: yellow
The unit B894001 contains two identical transistor emit. ter-follower circuits that perform a non-inverting bufferamplifier function with a low output impedance.
The unit is equipped with a tapping on the output resistor for cases in which a level shift towards the positive supply line is required.

Terminals

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{T}_{2}=$ tap output 2
3. $\mathrm{W}_{2}=$ input 2
4. $\mathrm{P}_{2}=$ supply $+6 \mathrm{~V}(2)$
5. $P_{1}=$ supply +6 V (1)
6. $\mathrm{N}_{2}=$ supply -6 V (2)
7. $\mathrm{N}_{1}=$ supply -6 V (1)
8. $W_{1}=$ input 1
9. $\mathrm{T}_{1}=$ tap output 1
10. $\mathrm{Q}_{1}=$ output 1

2EF2 - TWIN EMITTER FOLLOWER

Type number: B8 94003
Colour: yellow
The unit B894003 contains two identical EF2 emitterfollower circuits that perform a buffer amplifier function. The unit has been especially designed to amplify the weak output signals originating from a diode gate circuit.
The output signal is normally taken from the Q-terminal. When a flip-flop is to be set or reset by an EF2, normally the diode output R is used, the memory function of the flip-flop then being maintained.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{M}_{2}=$ clamp diode 2
3. $\mathrm{R}_{2}=$ diode output 2
4. $W_{2}=$ input 2
5. $\mathrm{P}=$ supply +6 V
6. $W_{1}=$ input 1
7. $\mathrm{N}=$ supply -6 V
8. $\mathrm{R}_{1}=$ diode output 1
9. $M_{1}=$ clamp diode 1
10. $\mathrm{Q}_{1}=$ output 1

CIRCUIT BLOCKS - 100 series

Colour: yellow

UNITS WITH AN AMPLIFYING FUNCTION
TWIN INVERTER AMPLIFIER -RIA 1

The unit contains two identical inverter circuits. The circuits constitute an inverting (NOT) function when driven by a signal on the input terminal W.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{W}_{2}=$ input 2
3. $\mathrm{E}_{2}=$ common supply 0 V
4. $\mathrm{E}_{1}=$ common supply OV
5. $\mathrm{P}_{1}=$ supply +6 V
6. $\mathrm{P}_{1}=$ supply +6 V
7. $\mathrm{N}_{2}=$ supply -6 V
8. $\mathrm{N}_{1}=$ supply -6 V
9. $W_{1}=$ input 1
10. $\mathrm{Q}_{1}=$ output 1

Type number: B8 94005
Colour: yellow
This unit, which has been specially designed to amplify the weak output signals originating from a diode gate circuit, can also be used as a driver for power stages.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $Q_{1}=$ output 1
3. $\mathrm{W}_{2}=$ input 2
4. $W_{1}=$ input 1
5. $\mathrm{N}_{4}=$ supply $-6 \mathrm{~V}^{1}$
6. $\mathrm{N}_{3}=$ supply $-6 \mathrm{~V}^{1}$
7. N_{2} = supply $-6 \mathrm{~V}^{1}$
8. $\mathrm{N}_{1}=$ supply $-6 \mathrm{~V}^{1}$
9. $\mathrm{P}=$ supply +6 V
10. $\mathrm{E}=$ common supply OV
${ }^{1}$ Use dependent on application.

Type number: B8 94000
Colour: yellow

EMITTER FOLLOWER/INVERTER AMPLIFIER - EF1/IA1

$$
f 12,95
$$

The two circuits, an emitter-follower circuit and an inverter circuit, can be used independently or in combination.

Terminals:

1. $\mathrm{Q}_{2}=$ output 2
2. $\mathrm{E}_{4}=$ common supply 0 V
3. $\mathrm{W}_{2}=$ input 2
4. $\mathrm{P}_{2}=$ supply +6 V
5. $\mathrm{P}_{1}=$ supply +6 V
6. $\mathrm{N}_{2}=$ supply -6 V
7. $\mathrm{N}_{1}=$ supply -6 V
8. $W_{1}=$ input 1
9. $T_{1}=$ tapped output 1
10. $Q_{1}=$ output 1

TWIN INVERTER AMPLIFIER - 2IA2

Note: EF1 terminals with index 1; IA1 terminals with index 2.

100 series - CIRCUIT BLOCKS

UNITS WITH AN AMPLIFYING FUNCTION

PA1-POWER AMPLIFIER

Type number: B8 90000

Colour: yellow
The amplifier is non-inverting, and can be driven directly by the circuit blocks FF1, FF2, FF3, FF4, OS2, IA1 and IA2. The absolute max. output loadability is 600 mA at - 60 V .

Terminals

1. $\mathrm{E}=$ common supply 0 V
2. $\mathrm{P}=$ supply +6 V
3. $\mathrm{N}_{1}=$ supply -6 V
4. $\mathrm{N}_{2}=$ supply max. -60 V
5. $\mathrm{N}_{2}=$ supply max. -60 V
6. $\mathrm{Q}=$ output
7. $W=$ input

For mounting on the chassis B871609 (page B22) use is made of a metal bracket as indicated in the figure. The PA1 occupies the width of three circuit blocks.

On a standard printed-wiring board, for use in the chassis B871610 (page B22), up to four PA1's can be mounted, the next position in the chassis being left empty.

STANDARD P.W. BOARD, TYPE P8 90640 FOR 4 PA1'S

For use in the mounting chassis B871610 a standard p.w. board, type number P890640, is available. Its outside dimensions are $121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6$ $\mathrm{mm}\left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right)$. It can be used directly with the aid of the mating connector type F045CC/025.

CIRCUIT BLOCKS - 100 series

UNITS WITH A COUNTER AND SHIFT REGISTER FUNCTION

Type number: B8 85000

(1-2-4-2 code - 4xFF1) DECADE COUNTER - DC 1

The unit B8 85000 consists of four flip-flops type B8 92000 mounted on a printed-wiring board and connected as a counter, working in the 1-2-4-2 code.
The counter is provided with pulse feed-back to achieve that six of the sixteen possible positions are skipped. The flip-flops can be reset by means of a common positive signal.
The reset diodes $D_{1}, D_{2}, D_{3}, D_{4}$ and the feed-back network D_{5}, D_{6}, R_{1} and C_{1} are mounted on the printed-wiring board.
The printed-wiring board type P8 90559 is provided with plated-through holes, double-sided printedwiring and double-sided gold-plated contacts.
The mating connector type $\mathrm{F} 042 \mathrm{ZZ} / 03$ is normally not supplied with the counter.

Terminals:

1. $\mathrm{Q}_{2 \mathrm{~B}}=$ output 2 flip-flop B
2. $\mathrm{Q}_{2 \mathrm{C}}=$ output 2 flip-flop C
3. $\mathrm{Q}_{2 \mathrm{D}}=$ output 2 flip-flop D
4. $\mathrm{Q}_{1 \mathrm{D}}=$ output 1 flip-flop D
5. $Q_{1 B}=$ output 1 flip-flop B
6. $\mathrm{Q}_{1 \mathrm{C}}=$ output 1 flip-flop C
7. $\mathrm{Q}_{2 \mathrm{~A}}=$ output 2 flip-flop A
8. $A=$ a.c.input
9. $\mathrm{P}_{2}=$ supply +6 V
10. $\mathrm{E}=$ common supply 0 V
11. $V=$ reset input
12. $\mathrm{P}_{1}=$ supply +6 V
13. $\mathrm{N}=$ supply -6 V
14. $\mathrm{Q}_{1 \mathrm{~A}}=$ output 1 flip-flop A

100 series - CIRCUIT BLOCKS

UNITS WITH A COUNTER AND SHIFT REGISTER FUNCTION

$f 200,-$

2DCA2 - TWIN DECADE COUNTER (1-2-4-8 code $-2 \times 4 \times$ FF)

The unit B885001 contains two identical decade counter units, mounted on a printed-wiring board. Each counter consists of four flip-flops FF3 (type B892002), connected to operate in the 1-2-4-8 code. With the mating connector type F045CC/025, the printed-wiring board of standard dimensions (121.8 $\mathrm{mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}$) can be used directly in the standard mounting chassis, type B871610.

Type number: B8 85001

Terminals:

1. $V_{1}=$ reset input counter 1
2. $A_{1}=$ a.c. input counter 1
3. $Q_{2 A}=$ output 2 flip-flop A
4. $\mathrm{Q}_{2 \mathrm{~B}}=$ output 2 flip-flop B
5. $Q_{2 C}=$ output 2 flip-flop C
6. $\mathrm{Q}_{2 \mathrm{D}}=$ output 2 flip-flop D
7. $\mathrm{Q}_{1 \mathrm{D}}=$ output 1 flip-flop D
8. $\mathrm{Q}_{1 \mathrm{C}}=$ output 1 flip-flop C
9. $Q_{1 B}=$ output 1 flip-flop B
10. $Q_{1 A}=$ output 1 flip-flop A
11. $\mathrm{Q}_{\mathrm{IE}}=$ output 1 flip-flop E
12. $\mathrm{Q}_{1 \mathrm{~F}}=$ output 1 flip-flop F
13. $\mathrm{Q}_{1 \mathrm{G}}=$ output 1 flip-flop G
14. $\mathrm{Q}_{1 \mathrm{H}}=$ output 1 flip-flop H
15. $\mathrm{Q}_{2 \mathrm{H}}=$ output 2 flip-flop H
16. $\mathrm{Q}_{2 G}=$ output 2 flip-flop G
17. $\mathrm{Q}_{2 \mathrm{~F}}=$ output 2 flip-flop F
18. $\mathrm{Q}_{2 \mathrm{E}}=$ output 2 flip-flop E
19. $\mathrm{A}_{2}=$ ac. input counter 2
20. $\mathrm{V}_{2}=$ reset input counter 2
21. $\mathrm{N}=$ common negative supply -6 V
22. $\mathrm{P}=$ common positive supply +6 V
23. $\mathrm{E}=$ common supply O V

B16

UNITS WITH A COUNTER AND SHIFT REGISTER FUNCTION

($5 \times$ FF4 + 5×2. PL2) REVERSIBLE SHIFT REGISTER OR RING COUNTER - RCA1 Type number: BB 85002

The unit B885002 consists of five flip-flops FF4 (type B892003) and five twin pulse logics 2PL2 (type B893007), mounted on a printed-wiring board, interconnected to operate as a bi-directional shift register. A bi-directional decade counter can be realized by interconnecting the gate terminals G of the first flip-flop with the output terminals Q of the fifth flip-flop and the gate terminals G of the fifth twin pulse logic with the output terminals Q of the first flip-flop.
With the mating connector type F045CC/025, not supplied with the reversible counter, this printedwiring board of standard dimensions ($121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}$) can be used directly in the standard mounting chassis type B8 71610.

Terminals:

1. $A_{1}=$ a.c. input forward direction
2. $G_{1}=$ gate input $\left(G_{1}\right)$ flip-flop A
3. $G_{2}=$ gate input $\left(G_{2}\right)$ flip-flop A
4. $Q_{2 E}=$ output 2 flip-flop E
5. $Q_{1 E}=$ output 1 flip-flop E
6. $\mathrm{Q}_{2 \mathrm{D}}=$ output 2 flip-flop D
7. $\mathrm{Q}_{1 \mathrm{D}}=$ output 1 flip-flop D
8. $Q_{2 C}=$ output 2 flip-flop C
9. $\mathrm{Q}_{1 \mathrm{C}}=$ output 1 flip-flop C
10. $\mathrm{Q}_{2 \mathrm{~B}}=$ output 2 flip-flop B
11. $Q_{1 B}=$ output 1 flip-flop B
12. $\mathrm{Q}_{2 \mathrm{~A}}=$ output 2 flip-flop A
13. $Q_{1 \mathrm{~A}}=$ output 1 flip-flop A
14. $G_{3}=$ gate input $\left(G_{1}\right)$ twin pulse logic E^{\prime}
15. $G_{4}=$ gate input $\left(G_{2}\right)$ twin pulse logic E^{\prime}
16. 17, 18. not connected
17. $\mathrm{A}_{2}=$ a.c. input reverse direction
18. $V=$ reset input
19. $\mathrm{N}=$ common negative supply -6 V
20. $\mathrm{P}=$ common positive supply +6 V
21. $\mathrm{E}=$ common supply OV

100 series - CIRCUIT BLOCKS

UNITS WITH A FERRITE-CORE MEMORY DRIVE FUNCTION

READ AMPLIFIER

This read or sense amplifier, consisting of two circuit blocks of standard dimensions, types RA2A and RA2B, is designed to amplify the signals originating from the sense wire of ferrite-core memories. The input is balanced, so either positive-going or negative-going input signals can be applied. The sensitivity of the RA2A can be adjusted to the signal levels of the memory plane by means of an external resistor. The output of the RA2B can be used directly to set a flip-flop of the $100 \mathrm{kc} / \mathrm{s}$ range on its input terminal W.

RA2A $\quad-51,-$

Type number B8 94007
Colour: yellow
Terminals:

1. $W_{1}=$ input
2. $W_{2}=$ input
3. not connected
4. $W_{3}=$ for external resistor
5. $\mathrm{K}_{1}=$ to be connected to terminat 5 of RA2B
6. not connected
7. not connected
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{P}=$ supply +6 V
10. $\mathbf{E}=$ common supply 0 V

RA2B $f 34-$

Type number B8 94008
Colour: yellow
Terminals:

1. not connected
2. not connected
3. not connected
4. not connected
5. $\mathrm{K}_{2}=$ to be connected to terminat 5 of RA2A
6. $\mathrm{Q}=$ output
7. $\mathrm{S}=$ input STROBE pulse
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{P}=$ supply +6 V
10. $\mathbf{E}=$ common supply 0 V

UNITS WITH A FERRITE-CORE MEMORY DRIVE FUNCTION

Type number: B8 94006 Colour: yellow

$f 32,5^{\circ}$
READ AMPLIFIER - RA1

The unit is designed to amplify the signals originating from the sense wire of a small ferrite-core memory plane Ar equipped with cores type 6B2, FX2423 or equivalent types. The maximum plane size is 16×16 cores.
The circuit consists of a two-stage amplifier; the first stage is balanced, so that the circuit can deal with either positivegoing or negative-going input signals.
Ambient temperature 0 to $+60^{\circ} \mathrm{C}$.

Terminals:

1. not connected
2. $\mathrm{Q}=$ output
3. $\mathrm{Q}=$ output
4. $A_{1}=$ input
5. $A_{2}=$ input
6. $\mathrm{N}_{1}=$ supply -6 V
7. $\mathrm{N}_{2}=$ supply -6 V
8. internally connected
9. $\mathrm{P}=$ supply +6 V
10. $\mathrm{E}=$ common supply OV

Type number: B8 95002
Colour: green
The unit is designed to operate as a "short-interval" switch for ferrite-core memory operation in combination with other standard circuit blocks. The switching is controlled by an input level change applied to a pre-amplifier stage.

Terminals:

1. $\mathbf{R}=$ switch in
2. $K=$ transformer terminal
3. $O=$ transformer terminal

PULSE GENERATOR - PG1

4. $\mathrm{S}=$ switch out
5. $\mathrm{E}=$ common supply OV
6. $L=$ transformer terminal
7. $M=$ transformer terminal
8. $N=$ supply -6 V
9. $W=$ d.c. input
10. $\mathbf{A}=$ trigger input

100 series - CIRCUIT BLOCKS

UNITS WITH A FERRITE-CORE MEMORY DRIVE FUNCTION

SG1 - SELECTION GATE

Type number: B8 93005
Colour: orange
The first five input AND gates which decode the selection register information, if followed by a twin two-input AND gate, can perform the read/write control function. The unit is normally used for ferrite-core memory operation, in combination with other standard circuit blocks.

Terminals:

1. $W_{1}=$ selection input 1
2. $\mathrm{W}_{2}=$ selection input 2
3. $W_{3}=$ selection input 3
4. $W_{4}=$ selection input 4
5. $W_{\overline{5}}=$ selection input 5
6. $\mathrm{L}_{1}=\mathrm{read} / \mathrm{write}$ control input 1
7. $\mathrm{L}_{\underline{g}}=\mathrm{read} /$ write control input 2
8. $\mathrm{N}=$ supply -6 V
9. $\mathrm{Q}_{2}=$ output 2
10. $Q_{1}=$ output 1

The selection input terminals W are connected to the flip-flop in the Selection Register. Depending on the size of the memory, this connection may be direct or via adequate amplifier stages.

2SS1 - TWIN SELECTION SWITCH

Type number: B8960 00
Colour: blue
The unit 2SS1 contains two identical circuits designed to operate as current switches in series with the drive wires of a ferrite-core memory.

Terminals:

1. $W_{1}=$ control input 1
2. $\mathrm{W}_{2}=$ control input 2
3. $\mathrm{N}=$ supply -6 V
4. $\mathrm{L}_{2}=$ current input 2
5. $\mathrm{L}_{1}=$ current input 1
6. $\mathrm{R}_{2}=$ switch 2 in
7. $\mathrm{S}_{\mathrm{I}}=$ switch 1 out
8. not connected
9. $\mathrm{S}_{2}=$ switch 2 out
10. $\mathrm{R}_{\mathrm{t}}=$ switch 1 in

If not otherwise indicated the N and P terminals of each unit are connected to V_{n} and V_{p} respectively. $\left(V_{n}=-6 V \pm 5 \%, V_{p}=+6 V \pm 5 \% ; V_{n} / V_{p}= \pm 5 \%\right)$.

		$\substack{\text { drivins } \\ \text { cois } \\ \text { din }}$		vi*	maximum numbar al driven unitı																						
					FFi		FF2			FF]			FF4			4	EF1	$\underline{141}$	$\begin{array}{\|c\|} \hline \text { EF2 } \\ \hline w \\ \hline \end{array}$	142	$\begin{array}{\|c\|} \hline \text { PSI } \\ \hline \\ \hline \end{array}$	052	$\frac{081}{4}$	$\frac{P_{A 1}}{W}$	POI		
		', p P	$\begin{aligned} & \text { out, } \\ & \text { pout } \end{aligned}$		W	$\stackrel{ }{4}$	w	${ }^{1}$	\square	*	$A_{1 / *}{ }^{2}$	A1 + A2]	w	A	${ }^{6}$	*									4	${ }^{6}$	
		FF1	0		1^{11}	4^{9})	1)	$4{ }^{9} 1$	$2{ }^{10} 1$	11)	2^{10})	$\left.2^{10}\right)$	1)	$\left.2^{10}\right)$	$\left.2^{(010}\right)$	5	1	1	2	n	$6^{5,2,1}$	(19)	2^{203}	1	1^{1010}	$1^{10} 1$	
		FF2	0		(1)	$1^{19} 1$	11)	$\left.1^{10}\right)$	$2^{10}{ }^{10}$	(1)	(10)	$1{ }^{10} 1$	11)	110	$2{ }^{10} 1$	5	1	1	2	0	21032	$1^{10} 1$	$2{ }^{10} 1$	1	$1^{10} 1$	I^{1015}	
		FF3	0		11)	5°)	11)	$5^{9} 1$	$2{ }^{10}$	11)	$3^{10} 1$	$3^{10}{ }^{10}$	$1{ }^{11}$	3^{10})	$3^{19} 19$	12	1	1	2	0	$\left.7{ }^{9}\right)^{2}$	5^{5})	${ }_{4}{ }^{10} 2$	2	$\left.3^{10}\right)$	3^{108}	
		FF4	9		1^{11}	59)	1^{11}	5^{9})	2^{10})	11)	3^{310}	$3^{10}{ }^{10}$	11)	3^{109}	$\left.3^{19}\right)$	12	1	1	2	0	70, ${ }^{2}$	5^{9})	$4^{13} 1$	2	3 ${ }^{10}$)	${ }^{10}$	
	\|A		N1	0		0	$\left.4^{4}\right)^{3}$	0	$\left.4^{4}\right)^{3}{ }^{3}$	0	0	$2^{\text {J }}$	1^{13}	0	$1{ }^{3} 1$	0	0	0	0	1	131	1	(413,	13)	0	0	0
	$\begin{aligned} & \mathrm{FF} 1^{109} \\ & \mathrm{OSF}^{10} \end{aligned}$				0	$4{ }^{4}$	0	$4^{4} 1$	0	0	2	1	0	1	0	0	0	0	1	151	1	44)		0	1	0	
P31	A2																										
	$\mathrm{FF2}^{\text {[10) }}$				0	141	0	141	0	0	1	1	0	1	0	0	0	0	1	15)	1	14)		0	2	0	
	P51				0	241	0	$2^{4} 1$	0	0	1	0	0	0	0	0	0	0	1	151	1	24	0	0	0	0	
					0	$5^{4} 1$	0	$5^{4} 1$	0	0	3	2	0	2	0	0	0	0	1	$1^{3} 1$	1	$5^{4}{ }^{\text {4 }}$	3	0	3	0	
	OS ${ }^{4} 1$				0	6	0	\%	0	0	6	3	0	5	0	0	0	0	1	13)	1	\square	12	0	10	0	
	Os241				0	5	0	5	0	0	5	3	0	3	0	0	0	0	1	(19)	1	6	4	0	3	0	
	${ }^{\text {N1 }}$	P_{1}	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1^{181}	1	0	0	0	0	0	
		EF1.	9		41 !	-	41)	E	0	3^{11}	0	0	3^{11}	0	0	4	E	1	V-1	0	$\left.18^{2}\right)$	-	0	0	0	0	
		EFI	T		$1{ }^{61}$	-	$1{ }^{61}$	E.	0	$1{ }^{61}$	0	0	191	0	0	C	-	0	2.	1	0	-2	0	0	0	0	
		(A)	0		2^{11}	$4^{3} 1$	2^{11}	$4^{3} 1$	3	$2{ }^{11}$	$\begin{aligned} & \hline 2^{3} 1 \\ & \left.3^{3} 1^{1}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & 2^{3} 1 \\ & 3^{3} 1^{7} 1 \\ & \hline \end{aligned}$	2^{11}	$\begin{array}{\|l\|} \hline 2^{3} 1 \\ 3^{3} 1^{3} \\ \hline \end{array}$	2	$\begin{array}{\|c\|} \hline 7 \\ 16^{7}, \\ \hline \end{array}$	2	2	5	1	$8^{2} 1$	$4^{3}{ }^{3}$	$\begin{aligned} & 4^{3} \\ & 9^{3}, 3^{75} \end{aligned}$	1	2 ${ }^{3}$)	2	
	N1	EF2	0		$2{ }^{1} 1$	4	$2^{1)}$	4	3	111	2	2	$1^{1} 1$	2	10	50	2	2	5	1.	$8{ }^{3} 1$	4	4	1	4	6	
H1	P1			ASY年 ${ }^{\text {c }}$	$\left.2^{1}\right)$	4	$\left.2^{1}\right)$	4	3	19	2	2	${ }^{\left.1{ }^{1}\right)}$	2	10	27	2	1	5	1	$\mathrm{a}^{\text {7 }}$)	1	4	1	4	6	
N1	$\begin{array}{\|l\|} \hline \mathbf{N}_{1} \\ \hline \mathbf{P}_{1} \\ \hline \end{array}$		R		1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	
N1	$\begin{aligned} & \mathrm{N}^{\left.1{ }^{9}\right)} \\ & \hline \mathbf{P}\left(1^{\mathrm{B}}\right) \\ & \hline \end{aligned}$	1A2	0		$\left.2^{1}\right)$	0	$2^{1} 1$	0	0	$\left.2^{1}\right)$	0	0	211	0	0	0	2	2	5	1	$\left.\mathrm{a}^{2}\right)$	0	0	0	0	0	
	$\begin{aligned} & \mid A_{1} \\ & 1_{2} 2 \end{aligned}$				2 ${ }^{1}$	4	${ }^{21}$	4	3	$2^{1} 1$	5^{7}	5^{7}	$\left.2^{11}\right)$	$\left.5^{\prime}\right)$	10	60	2	2	5	1	$\left.\mathrm{a}^{2}\right)$	6	$\begin{aligned} & 7 \\ & 8 \\ & \hline \end{aligned}$	10	$\begin{aligned} & 7 \\ & 9_{1} \end{aligned}$	1	
	$\begin{array}{\|l\|} \hline \text { PS1 } \\ \hline 052^{d} \\ \hline \end{array}$				2^{81}	4	2^{21}	4	3	2')	$\begin{aligned} & 2 \\ & 3^{7} \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3^{7} 1 \\ \hline \end{array}$	${ }^{2}{ }^{1}$)	$\begin{aligned} & 2 \\ & 3^{7} 3 \end{aligned}$	10	60	2	2	5	1	\square^{13}	4	$\left\{\begin{array}{l} 3 \\ 6 ? \end{array}\right.$	6	$\begin{aligned} & 3 \\ & 8^{7} \end{aligned}$	4	
NI		(42')	0		0	0	0	0	1	0	0	0	0	0	2	$\begin{aligned} & 8 \\ & 871 \\ & 5 \end{aligned}$	1	1	1	1	4^{2}	0	0	1	0	$\begin{aligned} & 2 \\ & 3^{7} 9 \end{aligned}$	
		P! 1	0		0	2	0	2	2	\square	1	1	0	1	1	2	1	1	2	1	$6^{2} 1$	2	1	0	1	1	
		OS1	01		21)	4	2^{11}	4	3	$\left.2^{1}\right)$	2	1	21)	1	1	3	2	2	5	0	$\left.8^{2}\right)$	4	1	0	1	1	
			42		1^{11}	0	${ }^{1{ }^{11}}$	0	-	1	0	0	0	0	0	0	1	1	2	0	${ }^{\left.3^{2}\right)}$	0	0	0	0	0	
		052	Q1		1')	6	1^{11})	6	¢	1')	6	5	$\left.1^{11}\right)$	5	10	12	1	1	2	1	$\left.6^{1}\right)$	6	13	6	10	10	
			\square_{2}		0	5	0	5	2	0	5	3	0	3	1	-	1	0	1	0	3^{2})	5	4	2	3	1	
		POI	0		0	20	0	20	0	0	20	20	0	20	0	${ }_{100}^{118}$	0	25^{127}	0	0	0	20	25	0	20	0	

.2. nol recommended
a) IA2 with only terminals N 1 or N 2 connected to $_{\mathrm{N}}$.
b) OS1 Q1 output only.
c) ASY27 common emitter stage with $1 \mathrm{k} \Omega$ collector resistor.
d) OS2 Q1 output only.
e) OS2 Q2 output only.

Note: A driving unit N_{1} preceded by an FF1 or an OS1, can drive Up to 2 units OS2. A driving unit N_{1} preceded by an FF 2 , can drive 1 unit OS1 maximum.

P1. Unless specified otherwise a P1 may be inserted between two units without great influence upon the loadability. AC inputs of FF1, FF2, FF3, FF4, OS1 and OS2 cannot be driven from it.
2PL1. The 2PL1 is normally used in conjunction with FF1 or FF2. In this case the input data are equivalent to those of the similar FF2 inputs. The output terminals are directly connected to the d.c. input terminals of the FF1 or FF2.

2PL2. Ditto for FF3 and FF4.

1. Each via a $4.7 \mathrm{k} \Omega \pm 5 \%$ resistor in series with a separating diode OA 200, anode to driven unit.
2. Each via a $12 \mathrm{k} \Omega \pm 5 \%$ resistor, bypassed by a 330 pF capacitor.
3. Only if the chain of units indicated is driven by an FF1, FF2, FF3, FF4, PS1 or by terminal Q1 of an OS1 or OS2.
4. The maximum speed of operation is $30 \mathrm{kc} / \mathrm{s}$
5. Via a diode OA200, cathode to N1, anode to 1A2, and bypassed by a 1500 pF capacitor.
6. Via a separating diode OA85, cathode to driven unit.
7. Only if the N -terminals of the driving unit are floating.
8. The P-terminal of the P1 gate floating.
9. Total number for both Q-outputs together.
10. Total number per Q-output.
11. Up to 100 only with a $390 \Omega \pm 5 \%$ resistor between the terminals Q and N.
12. For each stage of $I A 1$ connect $2,7 \mathrm{k} \Omega=5 \%$ between Q and N of $P A 1$ up to 25 ; min. resistance between Q and N 100Ω worst case.

100 series - CIRCUIT BLOCKS

MOUNTING AIDS AND ACCESSORIES FOR THE 100 SERIES

Mounting chassis

Two standardized types of chassis for the mounting of circuit blocks are available, both designed to be fitted in $19^{\prime \prime}$ racks.
The chassis of Fig. 1 can contain up to 24 standard printed-wiring boards (see Figs 3, 4, 5, 6 and 7) together with their mating connectors type F045CC/025 (for single-sided contacts) and F045DC/025 (for double-sided contacts), and can be mounted directly in a $19^{\prime \prime}$ rack.

Type number: B871610

Chassis for circuit blocks mounted on printed-wiring boards

Type number: B871609
Chassis for circuit blocks mounted side by side

The chassis of Fig. 2 can contain up to 19 circuit blocks mounted side by side.
A number of these chassis can be mounted in a metal frame. Fitted in a standard $19^{\prime \prime}$ rack, six of these chassis can be mounted side by side.

CIRCUIT BLOCKS - 100 series

PRINTED-WIRING BOARDS FOR THE 100 SERIES

Three types of printed-wiring boards are available for use in the chassis B8 71610 (Fig. 1) all with the same outside dimensions as indicated in the Figs 3, 4, 5, and 6. The thickness of these boards is 1.6 mm , and they are provided with 23 single-sided gold-plated contacts. The lay-out of these boards is in accordance with the I.E.C. standard grid of $2.54 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$.
Two larger types of experimenters' printed-wiring boards are available, both with 38 gold-plated contacts at the short sides of the board: type P890079 with single-sided, and type P890089 with doublesided contacts. Both are provided with the same copper pattern as the board illustrated in Fig. 3.

description	outside dimensions	figure	type number
experimenters' printed-wiring board (with punched holes)	$\begin{array}{r} 121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm} \\ \left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right) \end{array}$	3	$\text { P8 } 90611 / 6,$
universal printed-wiring board (with punched holes)	$\begin{aligned} & 121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm} \\ &\left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right) \end{aligned}$	4	P8 09146.2
universal printed-wiring board (with plated-through holes)	$\begin{array}{r} 121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm} \\ \left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right) \end{array}$	6	$\begin{aligned} & \text { P8 } 90615 \\ & \text { P8 } 90633 \end{aligned}$
universeel printed-wiring board (with plated-through holes)	$\begin{array}{r} 121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm} \\ \left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right) \end{array}$	7	736.1 - 8, 5
experimenters' printed-wiring board (with punched holes)	$200 \mathrm{~mm} \times 396 \mathrm{~mm} \times 1.6 \mathrm{~mm}$	8	P8 90079
experimenters' printed-wiring board (with double-sided contacts)	$200 \mathrm{~mm} \times 396 \mathrm{~mm} \times 1.6 \mathrm{~mm}$	8	P8 90089

Fig. 3

Fig. 4

100 series - CIRCUIT BLOCKS

PRINTED-WIRING BOARDS FOR THE 100 SERIES

EXAMPLE OF AN EXPERIMENTER'S PRINTED-WIRING BOARD WITH COMPONENTS

Fig. 8

STANDARD MASTER DRAWING SHEET

To facilitate the design of printed-wiring boards with a non-standard pattern for use in the chassis of type B871610, drawing sheets can be supplied on which the soldering pads, the plug-in contacts and some reference points are pre-printed (scale $2: 1$). They are made of special material that is dimensionally stable. The type number of this drawing sheet is P8 90156.

LOCKING TAG

Circuit blocks mounted parallel to printedwiring boards can be secured rigidly by means of a small tag, type number B8 43158 , which permits soldering in a standard 1.3 mm hole.

STICKERS 100 SERIES

For quick setting-up of master drawings on transparent tracing material as used e.g. for dye-line printing, a series of self-adhesive stickers with circuit-block symbols, as given in the relevant data sheets, is available. The stickers are delivered on rolls of 1000 pieces per type. Type numbers can be taken from the table given below.

circuit block	sticker type number	circuit block	sticker type number	circuit block	sticker type number
FF1	B1 53084	PD1		2EF1	B1 53092
FF2	B1 53085	2.2N1	B1 53087	2EF2	B1 53094
FF3	B1 53117	2.2P1	B1 53089	21A1	B1 53093
FF4	B\| 53118	2.3N1	BI 53086	21 A 2	B1 53095
OS1	B1 53097	2.3P1	B1 53088	EF1/IA1	B1 53091
OS2	B1 53121	2.PL1	B1 53090	PA1	B1 53122
PS1	B1 53096	2.PL2	B1 53119		

10 series - CIRCUIT BLOCKS

STANDARD UNITS FOR LOW SPEED (frequency $\mathbf{3 0 - 7 0} \mathbf{~ k c} / \mathrm{s}$)

These highly compact units have been designed for low speed applications; the maximum clock frequency for triggered logic applications is $30 \mathrm{kc} / \mathrm{s}$. Operation in a d.c. logic mode of various units up to a frequency of $65 \mathrm{kc} / \mathrm{s}$ is possible.

This range of circuit blocks is a logical extension to the existing range for medium-speed applications. It combines the general advantages of the approved circuit block conception with the following specific features:
high circuit density; combination of different circuits in one unit, e.g. gates and inverters; ease of application by extremely simple loading rules; increased versatility and improved mutual loadability; consequently possibilities of designing more compact equipment; high switching level; high built-in thresholds against electrical interference; wide storage temperature range.
This range of units is designed as part of a complete system, also comprising the new high-frequency 20 -series (see page B45).

Dimensions: The units are available in two standard cases, dimensions of which are given in the drawing.

CIRCUIT BLOCKS - $\mathbf{1 0}$ series

STANDARD UNITS FOR LOW SPEED (frequency $30 \mathrm{kc} / \mathrm{s}$)

Available types

function	colour code	description	type	type number
gate inverter and amplifier	yellow	twin gate inverters non-inverting gate amplifier $(70 \mathrm{~mA}, 20 \mathrm{~V})$	$\begin{aligned} & \text { 2.GI10 } \\ & \text { 2.GI11 } \\ & \text { 2.GI12 } \\ & \text { GA11 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73709 \\ & \text { 2P } 73717 \\ & \text { 2P } 73710 \\ & \text { 2P } 74829 \end{aligned}$
memory	red	bistable multivibrators: set flip-flop. flip-flop with trigger gate set flip-flop with trigger gate .	FF10 FF11 FF12	$\begin{aligned} & \text { 2P } 73701 \\ & \text { 2P } 73702 \\ & \text { 2P } 73703 \end{aligned}$
gate	orange	twin trigger gates quadrupple trigger gate	2.TG13 2.TG14 4.TG15	$\begin{aligned} & \text { 2P } 73718 \\ & \text { 2P } 73719 \\ & \text { 2P } 74818 \end{aligned}$
pulse shaper	green	one-shot multivibrator. timer unit pulse driver pulse shaper	$\begin{aligned} & \text { OS10 } \\ & \text { TU10 } \\ & \text { PD10 } \\ & \text { PS10 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73705 \\ & \text { 2P } 73706 \\ & \text { 2P } 73714 \\ & \text { 2P } 73713 / 10 \end{aligned}$
power amplifier	blue *	relay driver $(100 \mathrm{~mA}, 55 \mathrm{~V})$ power amplifier (2A, 55V)	$\begin{aligned} & \text { RD10 } \\ & \text { PA10 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73716 \\ & \text { 2P } 73707 \end{aligned}$

[^4]
10 series - CIRCUIT BLOCKS

UNITS WITH A NAND AND NOR FUNCTION

2.GI10 - TWIN GATE INVERTER AMPLIFIER

Type number: 2 P 73709

Colour insulating sleeve: yellow
The unit contains a single input and a double input positive diode gate-inverter combination, together with one separate diode which can be used to extend the number of gate inputs G on either of the two circuits at the extension gate inputs EG.
The collectors Q of the two transistors are not connected with their corresponding collector resistors R. Therefore with the two transistors a logical operation can be performed by interconnecting the two collectors Q with one collector resistor R. The second collector resistor R must be left disconnected.

2.GI11 - TWIN GATE INVERTER AMPLIFIER

Type number: 2 P 73717
Colour insulating sleeve: yellow
The unit contains a single input and a triple input positive diode gate-inverter combination, together with two separate diodes which can be used to extend the number of gate inputs G on either of the two circuits at the extension gate inputs EG.
The collectors Q of the two transistors are not connected with their corresponding collector resistor R. Therefore with the two transistors a logical operation can be performed by interconnecting the two collectors Q with one collector resistor \mathbf{R}. The second collector resistor \mathbf{R} must be left disconnected.

Terminals:

1. not connected
2. not connected
3. $G=$ gate input
4. $G=$ gate input
5. $\mathrm{R}=$ connection collector resistor
6. $\mathrm{Q}=$ output
7. $\mathrm{EG}=$ extension gate input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply $O V$
11. not connected
12. not connected
13. $G=$ gate input
14. $C=$ cathode separate diode
15. $\mathrm{R}=$ connection collector resistor
16. $\mathrm{Q}=$ output
17. $\mathrm{EG}=$ extension gate input
18. $D=$ anode separate diode
19. $\mathrm{P}=$ supply +12 V

Terminals:

1. $G=$ gate input
2. $G=$ gate input
3. $G=$ gate input
4. not connected
5. $\mathrm{R}=$ connection collector resistor
6. $\mathrm{Q}=$ output
7. $\mathrm{EG}=$ extension input
8. $\mathrm{D}=$ anode separate diode
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $G=$ gate input
12. not connected
13. $C=$ cathode separate diode
14. $\mathrm{D}=$ anode separate diode
15. $\mathrm{R}=$ connection collector resistance
16. $\mathrm{Q}=$ output
17. $\mathrm{EG}=$ extension gate input
18. $\mathrm{D}=$ anode separate diode
19. $\mathrm{P}=$ supply +12 V

CIRCUIT BLOCKS - 10 series

UNITS WITH A NAND AND NOR FUNCTION

TWIN GATE INVERTER AMPLIFIER - 2.GI12

Type number: 2 P 73710
Colour insulating sleeve: yellow
The unit contains a double input and a quadruple input positive diode gate-inverter combination, together with two separate diodes which can be used to extend the number of gate inputs G on either of the two circuits at the extension gate inputs EG.
The collectors Q of the two transistors are not connected with their corresponding collector resistors R . Therefore with the two transistors a logical operation can be performed by interconnecting the two collectors Q with one collector resistor R. The second collector resistor R must be left disconnected.

NON-INVERTING GATE AMPLIFIER-GA11

Type number: 2 P 74829

Colour insulating sleeve: yellow
The unit contains a gate circuit and a two-stage non-inverting amplifier. The gain is appreciable and the output of $70 \mathrm{~mA}, 20 \mathrm{~V}$ is sufficient to drive a relay. Three gate resistors are provided for a one- and a two-level gate input, allowing AND operation in a one-stage, AND-AND or AND-OR operation in a two-stage logic.

10 series - CIRCUIT BLOCKS

UNITS WITH A MEMORY FUNCTION

FF10 - FLIP-FLOP

Type number: 2P 73701
Colour insulating sleeve: red
The unit comprises a set/reset bistable multivibrator circuit. The number of set/reset inputs S can be extended with the aid of external diodes at the extension inputs ES .
The circuit constitutes a memory function, driven by means of a d.c. level at the set/reset inputs S. In conjunction with the twin trigger gates 2TG13, 2TG14 or the quadruple trigger gate 4TG15 an a.c. -driven (triggered) flip-flop can be formed, normally used in binary counters and shift registers.
In these applications the output terminals Q of the trigger gates are connected to the input terminals W of the flip-flop.

Terminals:

1. not connected
2. $\mathrm{ES}=$ extension set/reset input
3. not connected
4. $W=$ extension trigger gate
5. not connected
6. $\mathrm{Q}=$ output
7. not connected
8. $S=$ set/reset input
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply 0 V
11. not connected
12. $E S=$ extension set/reset input
13. not connected
14. $W=$ extension trigger gate
15. not connected
16. $\mathrm{Q}=$ output
17. not connected
18. $\mathrm{S}=$ set/reset input
19. $\mathrm{P}=$ supply +12 V

UNITS WITH A MEMORY FUNCTION

Type number: 2P 73702
Colour insulating sleeve: red
The unit contains a set/reset bistable multivibrator circuit with built-in trigger gates. The number of gate inputs G and trigger inputs T can be extended with the aid of external diodes at the extension inputs EG or ET.
The circuit performs a memory function when driven by means of a d.c. level at the extension set/reset input ES or a negative-going trigger signal at the trigger inputs T . In the case of trigger drive, the switching of the flip-flop can be controlled by a d.c. level applied to the built-in gate inputs G (e.g. in shift registers), whilst the trigger inputs T are interconnected. It can also be used as a divider, when the gate inputs G are connected to the corresponding outputs Q . With the aid of trigger gates 2TG13, 2TG14 or the quadruple trigger gate $4 T \mathrm{G} 15$, extra triggering facilities can be made by connecting their outputs Q to the trigger gate inputs W of the flip-flop (e.g. in bi-directional shift registers and counters).

Terminals:

1. $E G=$ extenstion gate input
2. $\mathrm{ES}=$ extension set/reset input
3. $\mathrm{ET}=$ extension trigger input
4. $W=$ extension trigger gate
5. $G=$ gate input
6. $\mathrm{Q}=$ output
7. $\mathrm{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $E G=$ extension gate input
12. $\mathrm{ES}=$ extension set/reset input
13. $\mathrm{ET}=$ extension trigger input
14. $W=$ extension trigger gate
15. $\mathrm{G}=$ gate input
16. $\mathrm{Q}=$ output
17. $\mathrm{T}=$ trigger input
18. not connected
19. $\mathrm{P}=$ supply +12 V

10 series - CIRCUIT BLOCKS

UNITS WITH A MEMORY FUNCTION

FF12 - FLIP-FLOP

Type number: 2P 73703

Colour insulating sleeve: red
The unit comprises a set/reset bistable multivibrator circuit with built-in trigger gates. The number of set/reset inputs S, gate inputs G and trigger inputs T can be extended with the aid of external diodes at the extension inputs ES, EG or ET. The circuit constitutes a memory function when driven by means of a d.c. level at the set/reset inputs S or a negative-going trigger signal at the trigger inputs T. In the case of trigger drive, the switching of the flip-flop can be controlled by a d.c. level applied to the built-in gate inputs G (e.g. in shift registers), whilst the trigger inputs T are interconnected. It can also be used as a binary divider, when the gate inputs G are connected to the corresponding outputs Q.
With the aid of trigger gates 2TG13, 2TG14 or the quadruple trigger gate 4TG15, extra triggering facilities can be made by connecting their outputs Q to the corresponding trigger gate inputs W of the flip-flop (e.g. in bi-directional shift registers and counters).

Terminals

1. $E G=$ extension gate input
2. $\mathrm{ES}=$ extension set/reset input
3. $\mathrm{ET}=$ extension trigger input
4. $W=$ extension trigger gate
5. $G=$ gate input
6. $\mathrm{Q}=$ output
7. $\mathrm{T}=$ trigger input
8. $S=$ set/reset input
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply 0 V
11. $E G=$ extension gate input
12. ES = extension set/reset input
13. $\mathrm{ET}=$ extension trigger input
14. $W=$ extension trigger gate
15. $G=$ gate input
16. $\mathrm{Q}=$ output
17. $\mathrm{T}=$ trigger input
18. $\mathrm{S}=$ set/reset input
19. $\mathrm{P}=$ supply +12 V

Type number: 2P 73718
Colour insulating sleeve: orange
The unit comprises two identical trigger gate circuits, which are normally used in conjunction with flip-flop units FF10, FF11, or FF12.
With the twin trigger gate a second pair of trigger inputs is formed for the flip-flops FF11 or FF12, to make one stage of a bi-directional counter or shift register. In these applications the output terminals G of the 2TG13 are to be connected directly to the input terminals W of the flip-flop. The trigger gates are controlled by a d.c. voltage level, applied to the input terminals G.
The number of gate inputs G or trigger inputs T can be extended with the aid of external diodes at the extension inputs EG or ET.

Terminals:

1. $\mathrm{EG}=$ extension gate input
2. not connected
3. $\mathrm{ET}=$ extension trigger input
4. $\mathrm{Q}=$ output
5. $G=$ gate input
6. not connected
7. $\mathbf{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $\mathrm{EG}=$ extension gate input
12. not connected
13. $\mathrm{ET}=$ extension trigger input
14. $\mathrm{Q}=$ output
15. $\mathrm{G}=$ gate input
16. not connected
17. $\mathrm{T}=$ trigger input
18. not connected
19. $\mathrm{P}=$ supply +12 V

10 series - CIRCUIT BLOCKS

UNITS WITH A PULSE GATING FUNCTION

2TG14 - TWIN TRIGGER GATE

Type number: 2P 73719
Colour insulating sleeve: orange
The unit comprises two identical trigger gate circuits, which are normaliy used in conjunction with flip-flop units FF10, FF11, or FF12.
With the twin trigger gate a second pair of trigger inputs is formed for the flip-flops FF11 or FF12, to make one stage of a bi-directional counter or shift register. In these applications the output terminals Q of the 2TG14 are to be connected directly to the input terminals W of the flip-flop.
The trigger gates are controlled by a d.c. voltage level applied to the input terminals G.
Two separate built-in diodes can be used to extend the number of gate inputs G at the extension inputs EG

Terminals:

1. $\mathrm{EG}=$ extension gate input
2. $D=$ anode separate diode
3. $E T=$ extension trigger input
4. $\mathrm{Q}=$ output
5. $\mathrm{G}=$ gate input
6. $C=$ cathode separate diode
7. $\mathrm{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $\mathrm{EG}=$ extension gate input
12. $\mathrm{D}=$ anode separate diode
13. $\mathrm{ET}=$ extension trigger input
14. $\mathrm{Q}=$ output
15. $\mathrm{G}=$ gate input
16. $C=$ cathode separate diode
17. $\mathrm{T}=$ trigger input
18. not connected
19. $\mathrm{P}=$ supply +12 V

QUADRUPLE TRIGGER GATE - 4TG15

Type number: 2P 74818
Colour insulating sleeve: orange
The unit comprises four separate identical trigger gate circuits, which are normally used in conjunction with flip-flop units FF10, FF11, or FF12.
By connecting the output terminals Q of the 4TG15 directly to the appropriate input terminals W of a flip-flop FF10, one stage of a bi-directional counter or bi-directional shift register is formed. When, however, the output terminals Q of one 4 TG15 are connected to the appropriate input terminals W of two units FF11 or FF12, two stages of a bi-directional counter or bi-directional shift register are formed. The trigger gates are controlled by a d.c. voltage level, applied to the input terminals G.
The number of gate inputs G can be extended with the aid of external diodes at the extension inputs EG.

Terminals:

1. $E G_{1}=$ extension gate input
2. $E G_{2}=$ extension gate input
3. $\mathrm{T}_{1}=$ trigger input
4. $\mathrm{Q}_{1}=$ output
5. $\mathrm{Q}_{2}=$ output
6. $\mathrm{G}_{1}=$ gate input
7. $G_{2}=$ gate input
8. $\mathrm{T}_{3}=$ trigger input
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $E G_{3}=$ extension gate input
12. $E G_{4}=$ extension gate input
13. $\mathrm{T}_{2}=$ trigger input
14. $\mathrm{Q}_{3}=$ output
15. $\mathrm{Q}_{4}=$ output
16. $G_{3}=$ gate input
17. $G_{4}=$ gate input
18. $\mathrm{T}_{4}=$ trigger input
19. $\mathrm{P}=$ supply +12 V

10 series - CIRCUIT BLOCKS

UNITS WITH A PULSE GENERATING AND PULSE SHAPING FUNCTION

OS10 - ONE-SHOT MULTIVIBRATOR

Type number: 2P 73705
Colour insulating sleeve: green
The unit OS 10 contains a monostable multivibrator circuit with a built-in trigger gate.
The trigger gate can be controlled by a d.c. voltage level applied via a diode to terminal EG. The number of trigger inputs T can be extended with the aid of external diodes at the extension input ET.
When a negative-going voltage step is applied to terminal T, the circuit generates a pulse at the output terminals Q, provided the gate is open. The duration of the output pulse can be increased by an external capacitor to be connected between the terminals EC_{1} and EC_{2}. Output pulse duration $4 \mu \mathrm{sec}$ to 30 msec .

Terminals:

1. $\mathrm{EG}=$ extension gate input
2. not connected
3. $\mathrm{ET}=$ extension trigger input
4. not connected
5. not connected
6. $Q_{1}=$ output 1
7. $\mathrm{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $E=$ common supply $O V$
11. $E C_{2}=$ for external capacitor
12. not connected
13. not connected
14. not connected
15. not connected
16. $\mathrm{Q}_{2}=$ output 2
17. $E C_{1}=$ for external capacitor
18. not connected
19. $\mathrm{P}=$ supply +12 V

UNITS WITH A PULSE GENERATING AND PULSE SHAPING FUNCTION

Type number: 2P 73706
Colour insulating sleeve: green
The unit TU10 contains a timing circuit followed by a Schmitt trigger circuit and an inverting amplifier. It also comprises a built-in trigger gate. The trigger gate can be controlled by a d.c. voltage level applied via a diode to terminal EG. The number of trigger inputs T can be extended with the aid of external dicdes at the extension input ET.
When a negative-going voltage step is applied to terminal T , the circuit generates a positive-going pulse at the output terminal Q , provided the gate is open. The duration of the output pulse is determined by the value of the external capacitor to be connected between the terminals EC_{1} and EC_{2} and of the external resistor between the terminals $E R$ and P. Output pulse duration max. 60 sec .

Terminals:

1. $E G=$ extension gate input
2. not connected
3. $E T=$ extension trigger input
4. not connected
5. not connected
6. not connected
7. $\mathrm{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply 0 V
11. $\mathrm{EC}_{1}=$ for external capacitor (- terminal)
12. not connected
13. not connected
14. not connected
15. $E R=$ for external resistor
16. $\mathrm{Q}=$ output
17. $\mathrm{EC}_{2}=$ for external capacitor (+ terminal)
18. $\mathrm{P}=$ supply +12 V (internally connected to terminal 19)
19. $\mathrm{P}=$ supply +12 V

UNITS WITH A PULSE GENERATING AND PULSE SHAPING FUNCTION

PD10 - PULSE DRIVER

Type number: 2P 73714
Colour insulating sleeve: green
The unit PD10 contains a monostable multivibrator circuit with a built-in trigger gate.
The trigger gate can be controlled by a d.c. voltage level applied via a diode to terminal EG. The number of trigger inputs T can be extended with aid of external diodes at the extension input ET.
When a negative-going voltage step is applied to terminal T , the circuit generates a pulse at the output terminal Q , provided the gate is open.
The duration of the output pulse can be increased (max. 5 msec .) by an external capacitor to be connected between the terminals EC_{1} and EC_{2}.
The unit is well suited as clock or reset source by virtue of its considerable output power.

Terminals:

1. $\mathrm{EG}=$ extension gate input
2. not connected
3. $\mathrm{ET}=$ extension trigger input
4. not connected
5. not connected
6. $\mathrm{Q}=$ output
7. $\mathrm{T}=$ trigger input
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{E}=$ common supply OV
11. $\mathbf{E C}_{1}=$ for external capacitor
12. not connected
13. not connected
14. not connected
15. not connected
16. not connected
17. $E C_{2}=$ for external capacitor
18. not connected
19. $\mathrm{P}=$ supply +12 V

UNITS WITH A PULSE GENERATING AND PULSE SHAPING FUNCTION

PULSE SHAPER - PS10

Type number: 2P 737 13/10
Colour insulating sleeve: green
The unit PS10 contains a Schmitt trigger (squaring) circuit followed by an inverting amplifier.
An input signal of a magnitude exceeding the tripping level of the unit is reshaped and inverted into the standard d.c. level at the output. The output voltage transients are short and suitable for driving the multivibrator circuits at their trigger inputs T.
The input terminals A and B are provided in order to be able to use the PS10 for the following purposes:

1. as a pulse shaper, driven by an external source;
2. as a relaxation oscillator circuit;
3. as a pulse shaper, driven by circuit blocks of the 10 -series.

Terminals:

1. $\mathbf{A}=$ resistor input (interconnected to terminal 17)
2. $\mathrm{B}=$ direct base input
3. not connected
4. $\mathrm{E}=$ common supply $0 V$ (interconnected to terminal 10)
5. not connected
6. $\mathrm{Q}=$ output
7. not connected
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathbf{E}=$ common supply $0 V$ (interconnected to terminal 4)
11. internally connected
12. not connected
13. not connected
14. internally connected
15. not connected
16. not connected
17. $\mathrm{A}=$ resistor input (interconnected to terminal 1)
18. $\mathrm{P}=$ supply +12 V
19. $\mathrm{P}=$ supply +12 V

Terminals 18 and 19 interconnected

10 series - CIRCUIT BLOCKS

UNITS WITH AN OUTPUT FUNCTION

RD10 - RELAY DRIVER

Type number: 2 P 73716
Colour insulating sleeve: blue
The unit comprises a single input positive diode gate followed by a non-inverting amplifier, intended for driving relays. The number of gate inputs G can be extended by means of external diodes to be connected to the extension gate input EG. The absolute max. output loadability is $2 \mathrm{~A},-55 \mathrm{~V}$.

PA10 - POWER AMPLIFIER

Terminals:

1. $E G=$ extension gate input
2. not connected
3. not connected
4. not connected
5. $G=$ gate input
6. not connected
7. not connected
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathbf{E}=$ common supply OV
11. not connected
12. not connected
13. not connected
14. not connected
15. not connected
16. $\mathrm{Q}=$ output
17. not connected
18. not connected
19. $\mathrm{P}=$ supply +12 V

Terminals:

1. $G=$ gate input
2. $\mathrm{EG}=$ extension gate input
3. $\mathrm{N}_{1}=$ supply -12 V
4. $\mathrm{P}=$ supply +12 V
5. $\mathrm{E}_{1}=$ common supply 0 V
6. $K=$ cathode of diode D 4
7. $\mathrm{E}_{2}=$ common supply OV
8. $\mathrm{N}_{2}=$ supply abs. max. 55 V
9. $\mathrm{N}_{2}{ }^{\prime}=$ supply abs. max. 55 V
10. $\mathrm{Q}=$ output

Type number: 2P 73707

The PA10 consists of a transistor amplifier circuit, designed to be used as a power amplifier with max. loadability of $2 \mathrm{~A},-55.5 \mathrm{~V}$. The amplifier can be driven directly by the circuit blocks FF10, FF11, FF12, 2GI10, 2Gl11, 2Gl12, OS10, PD10, PS10, GA11 and TU10.

CIRCUIT BLOCKS - 10 series

UNITS WITH AN OUTPUT FUNCTION

Printed-wiring board for PA10
Type number: 2P 17510

POWER AMPLIFIER - PA10
Mechanical construction

For use in the mounting chassis B871611, a glass-epoxy standard printed wiring board, 2P 17510 is available. Its outside dimensions are $121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ ($4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}$) and it can be used directly with the aid of the mating connector, with double-sided contacts type F 045 DC/025.
On this standard printed-wiring board up to four PA10's can be mounted, the next position in the chassis being left empty.

10 series - CIRCUIT BLOCKS

INPUT AND OUTPUT DATA

Input data

Output data

Loading rules

1. Verify that the sum of the required d.c. input currents of the driven units does not exceed the available d.c. output current of the driving unit.
2. When, however, T-inputs are incorporated in the driven units, the transient charges must also be verified.
3. Only driven units of which all inputs are high, do load the driving stage during the negative-going transient.
4. The wiring capacitance consumes an extra charge of $0.007 \mathrm{nC} / \mathrm{pF}$.
5. T-inputs of closed gates do not require any current or charge.
6. The verifications mentioned above hold for operations at the worst combination of supply voltage tolerance ($12 \mathrm{~V} \pm 5 \%$) and ambient temperature, between 0 and $+55^{\circ} \mathrm{C}$. For temperatures below $0^{\circ} \mathrm{C}$, derating data are given in the data sheet.

CIRCUIT BLOCKS - 10 series

MOUNTING AIDS AND ACCESSORIES FOR THE 10 SERIES

Mounting chassis type number B8 71611

This standardised type of chassis for assembling circuit blocks mounted on printed-wiring boards is designed to be fitted in 19 inch racks.
The chassis shown in Fig 1 can contain up to 21 standard printed-wiring boards with outside dimensions of $121.8 \mathrm{~mm} \times 180.3 \mathrm{~mm} \times 1.6 \mathrm{~mm}\left(4.8^{\prime \prime} \times 7.1^{\prime \prime} \times 0.0625^{\prime \prime}\right)$. Together with the printed-wiring boards and their mating connectors type F $045 \mathrm{CC} / 025$ (for single-sided contacts) or F 045 DC/025 (for double-sided contacts) it can be mounted directly in a 19 inch rack.

Fig. 1

Experimenters' printed-wiring board

For mounting in the chassis B8 71611 an experimenters' printed-wiring board is available, provisional type number PRR 23-3-556. It is a board with plated-through holes, to be used with the mating connector F $045 \mathrm{DC} / 025$. The outside dimensions are $121.8 \times 200.6 \times 1.6 \mathrm{~mm},\left(4.8^{\prime \prime} \times 7.9^{\prime \prime} \times 0.0625^{\prime \prime}\right)$ and they are provided with 2×23 gold-plated contacts. The lay-out is in accordance with the I.E.C. standard grid of $2.54 \mathrm{~mm}\left(0.1^{\prime \prime}\right)$.
The print pattern on both sides of the board, shown in Figs 2 and 3 , is chosen in such a way that it is applicable for horizontal as well as vertical mounting of the circuit blocks on the board.
The boards are provided with two marks to indicate the place at which they should be cut off, to obtain the standard length of 180.3 mm (7.1").

MOUNTING AIDS AND ACCESSORIES FOR THE 10 series

Fig. 2

Fig. 3

Locking caps

For better securing circuit blocks mounted parallel to a printedwiring board (horizontal mounting), window-shaped locking caps (Fig 4), type number 4322026 32151, are available. They fit the top of a circuit block.
The locking caps are provided with two holes and recesses to lodge two soldering tags, with which the caps can be secured to the board.
The soldering tags, type number 4322026 32141, have to be ordered separately.

Standard master drawing sheet

To facilitate the design of printed-wiring boards with a non-standard pattern for use in the chassis type B871611, drawing sheets can be supplied on which the soldering pads, the plug-in contacts and some reference points are preprinted (scale 2:1). They are made of material that is dimensionally stable. The type number of this drawing sheet is P8 90156.

Fig. 4

Stickers

For quick setting-up of master drawings on transparent tracing material, as used e.g. for dyeline printing, a series of self-adhesive stickers provided with circuit block symbols, as given in the indivi-
 dual data sheets, is available.
The stickers are delivered on rolis of 1000 pieces per type. The type numbers can be found in the table below.

circuit block	sticker type number	circuit block	sticker type number	circuit block	sticker type number
FF10	432202607611	2.GI12	432202607661	PD10	432202607721
FF11	07621	2.TG13	30561	GA10	07731
FF12	07631	2.TG14	30571	TU10	07741
2.Gl10	07641	PS10	07701	PA10	07751
2.Gl11	07651	OS10	07711	RD10	07771

CIRCUIT BLOCKS - 20 series

STANDARD UNITS FOR HIGH-SPEED APPLICATIONS (frequency $1.1 \mathrm{Mc} / \mathrm{s}$)

This new series of circuit blocks, the 20 -series, forms part of the same system as the 10 -series and is based upon the same technology.
This series is intended for high-speed applications: The maximum clock-frequency for triggered logic applications is up to $4 \mathrm{Mc} / \mathrm{s}$. Operation in a d.c. logic mode is possible up to a frequency of approx. $2.5 \mathrm{Mc} / \mathrm{s}$.
In these highly compact units use is made of double-diffused silicon planar epitaxial transistors. The blocks have a hermetically sealed metal can; the terminals are brought out via glass compression seals.
supply voltages $+12 \mathrm{~V} \pm 5 \% ;+6 \mathrm{~V} \pm 10 \% ;-12 \mathrm{~V} \pm 5 \%$

operating temperature
s
storage temperature
${ }^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$

house metal, rectangular, flat, colour black
terminals 19 in two rows (glass)
test specifications. MIL Std. 202 and IEC 68

Available types:

function	colour code	description	type	type number
gate inverter	yellow	twin gate inverter twin gate inverter twin gate inverter with high loadability.	$\begin{aligned} & \text { 2.GI20 } \\ & \text { 2.GI21 } \\ & \text { 2.GI22 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73723 \\ & \text { 2P } 73736 \\ & \text { 2P } 73729 \end{aligned}$
memory	red	bistable multivibrators: set/reset flip-flop triggered and gated flip-flop	$\begin{aligned} & \text { FF20 } \\ & \text { FF23 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73735 \\ & 2 P 73722 \end{aligned}$
gate	orange	twin trigger gate. .	2.TG23	2P 73725
pulse shaper	green	one-shot multivibrator pulse shaper twin line receiver	$\begin{aligned} & \text { OS20 } \\ & \text { PS20 } \\ & \text { 2.LR22 } \end{aligned}$	$\begin{aligned} & \text { 2P } 73726 \\ & \text { 2P } 73727 \\ & \text { 2P } 74809 \end{aligned}$
amplifier	yellow	twin line driver	2.LD21	2P 74808

The units FF22 and PD20 are under development.

UNITS WITH A GATE INVERTER FUNCTION

2.GI20 - TWIN GATE INVERTER

Type number: 2P 73723
Colour insulating sleeve: yellow
The unit contains a single input and a double input diode gate-inverter combination. The separate diode can be used to increase the numbers of gate inputs of either of the two circuits at the extension gate inputs EG.
Together with the inputs G they form an AND function on the positive level. The desired output Q is to be connected to its collector resistor R. A logic function can be obtained by connecting several outputs Q to one common resistor R.

Terminals

1. $G_{1}=$ gate input
2. $\mathrm{G}_{3}=$ gate input
3. not connected
4. not connected
5. $E G_{1}=$ extension gate input
6. $\mathrm{Q}_{1}=$ output
7. $\mathrm{R}_{1}=$ connection collector re-
sistor
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply OV
11. $\mathrm{G}_{2}=$ gate input
12. $K=$ cathode separate diode
13. not connected
14. D = anode separate diode
15. $\mathrm{EG}_{2}=$ extension gate input
16. $\mathrm{Q}_{2}=$ output
17. $\mathrm{R}_{2}=$ connection collector resistor
18. $\mathrm{P}_{2}=$ supply +6 V
19. $\mathrm{P}_{1}=$ supply +12 V

UNITS WITH A GATE INVERTER FUNCTION

2.GI21 - TWIN GATE INVERTER

Type number 2P 73736
Colour insulating sleeve: yellow
The unit contains a single input and a double input diode gate-inverter combination. The separate diodes can be used to increase the number of gate inputs of either of the two circuits at the extension gate inputs EG. Together with the inputs G they form an AND function on the positive level. The desired output Q is to be connected to its collector resistor R. A logic function can be obtained by connecting several outputs Q to one common resistor R.

Terminals:

1. $G_{1}=$ gate input
2. $\mathrm{G}_{3}=$ gate input
3. $G_{5}=$ gate input
4. $\mathrm{D}_{1}=$ anode separate diode
5. $E G_{1}=$ extension gate input
6. $Q_{1}=$ output
7. $\mathrm{R}_{1}=$ connection collector resistor
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. $\mathrm{G}_{2}=$ gate input
12. $K_{2}=$ cathode separate diode
13. $K_{1}=$ cathode separate diode
14. $\mathrm{D}_{2}=$ anode separate diode
15. $\mathrm{EG}_{2}=$ extension gate input
16. $\mathrm{Q}_{2}=$ output
17. $\mathrm{R}_{2}=$ connection collector re-
sistor
18. $\mathrm{P}_{2}=$ supply +6 V
19. $P_{1}=$ supply +12 V

20 series - CIRCUIT BLOCKS

UNITS WITH A GATE INVERTER FUNCTION

2.GI22 - TWIN GATE INVERTER

Type number: 2P 73729
Colour of insulating sleeve: yellow
The unit contains two gate inverters with a high loadability. The separate diode can be used to increase the number of gate inputs of either of the two circuits at the extension gate inputs EG.
Together with the inputs G they form an AND function on the positive level. The desired output Q is to be connected to its collector resistor R . A logic function can be obtained by connecting several outputs Q to one common resistor R .

Terminals:

1. $\mathrm{G}_{1}=$ gate input
2. $\mathrm{G}_{3}=$ gate input
3. not connected
4. not connected
5. $E G_{1}=$ extension gate input
6. $\mathrm{Q}_{1}=$ output
7. $\mathrm{R}_{1}=$ connection collector resistor
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. $\mathrm{G}_{2}=$ gate input
12. $K=$ cathode separate diode
13. not connected
14. anode separate diode
15. $E G_{2}=$ extension gate input
16. $\mathrm{Q}_{2}=$ output
17. $\mathrm{R}_{2}=$ connection collector re-
sistor
18. $\mathrm{P}_{2}=$ supply +6 V
19. $\mathrm{P}_{\mathrm{I}}=$ supply +12 V

UNITS WITH A MEMORY FUNCTION

Type number: 2P 73735
Colour of insulating sleeve: red
The unit contains a latch flip-flop for d.c. logic operations. Upon application of the $O V$ level to one of the set inputs S, the corresponding output Q resumes the positive level and the other output the 0 V level.
The positive level applied to a set input has no effect.
A logic function is obtained by connecting external diodes to an extension set input ES; the diodes form an OR function on the OV level.

Terminals:

1. not connected
2. $E S_{1}=$ extension set/reset input
3. not connected
4. internally connected
5. $S_{1}=$ set/reset input
6. $Q_{1}=$ output
7. not connected
8. $S_{1}=$ set/reset input
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. not connected
12. $\mathrm{ES}_{2}=$ extension set/reset input
13. not connected
14. internally connected
15. $\mathrm{S}_{2}=$ set/reset input
16. $\mathrm{Q}_{2}=$ output
17. not connected
18. $\mathrm{P}_{2}=$ supply +6 V
19. $\mathrm{P}_{1}=$ supply +12 V

20 series - CIRCUIT BLOCKS

UNITS WITH A MEMORY FUNCTION

FF23 - FLIP-FLOP

Type number: 2P 73722
Colour of insulating sleeve: red
The unit contains a general-purpose triggered flip-flop. Trigger pulses are applied to trigger inputs T .
The built-in trigger gates are opened by a positive level applied to the gate inputs G and are closed by a $O V$ level. A binary counter is made by connecting G_{1} to Q_{2}, and G_{2} to Q_{1}.
A shift register is made by connecting G_{1} and G_{2} of one circuit block to the terminals Q_{1} and Q_{2} respectively of the preceding flip-flop.
Applied as binary counter or as shift register the trigger inputs T_{1} and T_{2} have to be connected.
A twin trigger gate 2.TG23 may be connected to the base inputs B to obtain more triggering facilities (e.g. for bi-directional shift registers and counters).
A logic function is obtained by connecting external diodes to an extension set input ES and/or extension gate input EG.
Multiple clock lines may be applied via diodes connected to the extension trigger input ET.

Terminals:

1. $E G_{1}=$ extension gate input
2. $E S_{1}=$ extension set/reset input
3. $\mathrm{ET}_{1}=$ extension trigger input
4. $\mathrm{B}_{1}=$ extension trigger gate
5. $\mathrm{G}_{1}=$ gate input
6. $\mathrm{Q}_{1}=$ output
7. $\mathrm{T}_{1}=$ trigger input
8. $\mathrm{S}_{\mathrm{I}}=$ set/reset input
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. $E G_{2}=$ extension gate input
12. $E S_{2}=$ extension set/reset input
13. $E T_{2}=$ extension trigger input
14. $\mathrm{B}_{2}=$ extension trigger gate
15. $G_{2}=$ gate input
16. $\mathrm{Q}_{2}=$ output
17. $\mathrm{T}_{2}=$ trigger input
18. $\mathrm{P}_{2}=$ supply +6 V
19. $P_{1}=$ supply +12 V

CIRCUIT BLOCKS - 20 series

Type number: 2P 73725
Colour of insulating sleeve: orange
The circuit is identical to the trigger gate in the general-purpose triggered flipflop FF23.
When the outputs B_{1} and B_{2} of the trigger gate 2.TG23 are connected to the inputs B_{1} and B_{2} of the flip-flop FF23 respectively, the inputs G and T of the 2.TG23 operate in the same way as the corresponding inputs of the FF23. Thus with this trigger gate a second pair of trigger inputs are formed for the flip-flop FF23, to make one stage of a bi-directional counter or shift register.

Terminals:

1. $E G_{\mathrm{I}}=$ extension gate input
2. not connected
3. $\mathrm{ET}_{1}=$ extension trigger input
4. $\mathrm{B}_{1}=$ extension trigger gate
5. $\mathrm{G}_{1}=$ gate input
6. not connected
7. $\mathrm{T}_{1}=$ trigger input
8. not connected
9. not connected
10. $\mathrm{O}=$ common supply $0 V$
11. $\mathrm{EG}_{2}=$ extension gate input
12. not connected
13. $\mathrm{ET}_{2}=$ extension trigger input
14. $\mathrm{B}_{2}=$ extension trigger gate
15. $\mathrm{G}_{2}=$ gate input
16. not connected
17. $\mathrm{T}_{2}=$ trigger input
18. not conected
19. $P_{1}=$ supply +12 V

UNITS WITH A PULSE SHAPING FUNCTION

OS20-ONE-SHOT MULTIVIBRATOR

Type number: 2P 73726
Colour insulating sleeve: green.
This unit contains a triggered monostable (one-shot) multivibrator. Trigger pulses are applied to trigger input T. A limited number of diodes connected to extension trigger input ET can provide further trigger inputs.
The built-in trigger gate is opened by a positive level applied to the gate input EG and is closed by a 0 V level. A diode is required to separate each gate source from input EG.
The duration of the output pulse can be decreased by a resistor connected either between terminals R and $P_{1}(3)$ or R and $E C_{1}$. In order to increase the duration a capacitor can be connected between EC_{1} and EC_{2}.
A twin trigger gate 2.TG23 connected to input B can provide more trigger facilities.

Terminals:

1. $E C_{1}=$ external capacitor 1
2. $\mathrm{R}=$ external resistor
3. $P_{1}=$ external resistor
4. not connected
5. not connected
6. $Q_{1}=$ output 1
7. $\mathrm{EC}_{2}=$ external capacitor 2
8. not connected
9. $N=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. EG = extension gate input
12. not connected
13. $\mathrm{ET}=$ extension trigger input
14. $\mathrm{B}=$ extension trigger gate
15. not connected
16. $\mathrm{Q}_{2}=$ output 2
17. $\mathrm{T}=$ trigger input
18. $\mathrm{P}_{2}=$ supply +6 V
19. $\mathrm{P}_{\mathrm{I}}=$ supply +12 V

UNITS WITH A PULSE SHAPING FUNCTION

PULSE SHAPER PS20

Type number: 2P 73727

Colour insulating sleeve: green
The unit PS20 contains a Schmitt trigger (squaring) circuit followed by an inverting amplifier.
A voltage in excess of the ON-threshold voltage at input terminal B gives a 0 V level at output terminal Q ; a voltage below the OFF-threshold voltage at ter." minal B gives a positive level at output Q . The output voltage transients are suitable for driving multivibrator circuits at the trigger inputs T .
The pulse shaper can be driven by external sources as well as by circuit blocks of the 20 -series.

Terminals:

1. $\mathbf{B}=$ direct base input
2. not connected
3. $X_{1}=$ internally connected
4. $\mathrm{A}=$ resistor input
5. $D=$ common supply $O V$ (interconnected with terminal 10)
6. $X_{2}=$ internally connected
7. not connected
8. not connected
9. $N=$ supply -12 V
10. $\mathrm{O}=$ common supply OV
11. not connected
12. not connected
13. $\mathrm{C}=$ internally connected
14. not connected
15. not connected
16. $\mathrm{Q}=$ output
17. not connected
18. $\mathrm{P}_{2}=$ supply +6 V
19. $P_{1}=$ supply +12 V

20 series - CIRCUIT BLOCKS

UNITS WITH A PULSE SHAPING FUNCTION

2RL22-TWIN LEVEL RESTORER

Type number: 2P 74809
Colour insulating sleeve: green
This unit is intended to convert $3 \bigvee$ signal levels on lines to standard signal levels used in the " 20 series" of circuit blocks. It is normally used in conjunction with the twin line driver 2LD21. The input impedance is high. The unit is suited for multiple receiving.

Terminals:

1. not connected
2. $\mathrm{O}=$ common supply 0 V
3. not connected
4. not connected
5. not connected
6. $\mathrm{Q}_{1}=$ output
7. $\mathrm{R}_{1}=$ connection collector resistor
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply OV
11. $W_{1}=$ input
12. $W_{2}=$ input
13. not connected
14. not connected
15. not connected
16. $\mathrm{Q}_{2}=$ output
17. $\mathrm{R}_{2}=$ connection collector resistor
18. $P_{2}=$ supply +6 V
19. not connected

UNITS WITH AN AMPLIFYING FUNCTION

TWIN LINE DRIVER - 2LD21

Type number: 2P 74808

Colour insulating sleeve: yellow
This unit is intended to apply a sigrial level of 3 V to a line or other termination of 75Ω. The line terminals, in such case, are Q and O .
The line driver is generally fed from a line receiver 2.LR22,
To match a cable to the circuit an appropriate resistor is to be connected between E and the signal leg of the pair, while leaving Q floating.
A gate inverter (2.GI20, 2.GI21, or 2.GI22) can feed into the control input C , so performing a logic function. The collector resistance (terminal R) is not connected for this application.

Terminals:

1. $G_{1}=$ gate input
2. $E G_{1}=$ extension gate input
3. not connected
4. not connected
5. $\mathrm{Q}_{1}=$ output 75Ω
6. $C_{1}=$ logic gate input
7. $\mathrm{E}_{1}=$ output
8. not connected
9. $\mathrm{N}=$ supply -12 V
10. $\mathrm{O}=$ common supply 0 V
11. $\mathrm{G}_{2}=$ gate input
12. $E G_{2}=$ extension gate input
13. not connected
14. not connected
15. $\mathrm{Q}_{2}=$ output 75Ω
16. $C_{2}=$ logic gate input
17. $\mathrm{E}_{2}=$ output
18. $\mathrm{P}_{2}=$ supply +6 V
19. $\mathrm{P}_{1}=$ supply +12 V

The units FF22 and PD20 are under development.

20 series - CIRCUIT BLOCKS

INPUT AND OUTPUT DATA

Input data

unit	terminal	note	direct current (mA)	transient charge $(D C)$
FF20	S	gate open	2	160
FF22	T S			
FF23, TG23	G		2	100
	T		2	290
FF23	S		5	360
Gl20, Gl21	G		2	150
Gl22	G		2	150
OS20	G	gate open	2	100
	T		2	240
PD20	G	gate open	2	
	T		2	
LD21	G		2	150

Output data

unit	terminal	note	direct current (mA)
FF20	Q		transient charge $(p \mathrm{p})$
FF23	Q	17	645
Gl20, G121	Q	14	1400
Gl22	Q	15	540
OS20	Q_{1}	32	3600
	Q_{2}	14	1500
LR22	Q	15	1500
PS20	Q	15	540

Loading Rules

1. Verify that the sum of the required d.c. input currents of the driven units does not exceed the available d.c. output current of the driving unit.
2. When, however, T-inputs are incorporated in the driven units, the transient charges must also be verified.
3. The wiring capacitance consumes an extra charge of $3.5 \mathrm{pC} / \mathrm{pF}$.
4. T-inputs of closed gates do not require any current or charge.
5. The verifications mentioned above warrant reliable operation at the worst combination of supply voltage tolerances and ambient temperatures between 0 and $+85^{\circ} \mathrm{C}$. For operation at lower temperatures, the data for each type are given in the individual data sheets.

Norbits ${ }^{1}$ are standardised static switching elements of special design and with the following features: high reliability, long life, easy mounting, dust-proof, etc. They can be used in industrial control systems, such as lift control, traffic control, machine control, process control, recording control, transfer line control, alarm and annunciator systems.

It is possible to perform a large number of control functions with a small number of types. The basic element, the NOR-unit, is capable of performing the logical function AND/OR and NOT, whilst sequential logic circuits such as flip-flops can be built up from two or more of these NORunits. The series Norbits further includes ancillary elements for adaptation to industrial equipment.
temperature range $-10^{\circ} \mathrm{C}$ up to $+50^{\circ} \mathrm{C}$
frequency 0 to $\uparrow \mathrm{kc} / \mathrm{s}$
supply voltages. $+24 \mathrm{~V}_{\mathrm{dc}}$ and $-24 \mathrm{~V}_{\mathrm{dc}}$ (colerance $\pm 5 \%$)

Dimensional drawing of the basic Norbit case

Colour code of flexible leads

[^5]
NORBITS

SINGLE NOR-UNIT TYPE YL6000

Colour: red
The unit is capable of performing the basic logic functions AND, OR and NOT. The input signals can be derived either from a previous unit or from a suitable transducer. The unit can drive 6 other NOR-units.

EMITTER FOLLOWER UNIT YL6001

Colour: yellow
The unit comprises a transistor current amplifier in com-mon-collector connection for use as driver for medium power unit YL6008; it can also drive 17 standard Norbits.

DOUBL.E HIGH-POWER OUTPUT UNIT YL6004

Colour: not coded
The unit consists of two highpower amplifiers which may be used separately. The input of each amplifier must be driven by an YL6009. Load resistance is $4.3 \Omega \mathrm{~min}$. Available output current max. 6 A.

Overall dimensions: $255 \mathrm{~mm} \times 70 \mathrm{~mm} \times 40 \mathrm{~mm}$

Colour: violet

Unit YL6005/01 consists of 3 single binary counters YL6005/05 (bistable multivibrator: see diagram)

TB A: counter A terminals TB B: counter B terminals TB C: counter C terminals TB D: supply for all 3 counters
T.B.A , T.B.B
T.B.C
T.B.D

Top view of 3 plastic cases Colour: violet

[^6]The aluminium chassis can be used for mounting 12 units, it is equipped with 2 terminal blocks each having 5 contacts.

Overall dimensions: $254 \mathrm{~mm} \times 70 \mathrm{~mm} \times 31 \mathrm{~mm}$

MEDIUM-POWER OUTPUT UNIT YL6008

Overall dimensions: $64 \mathrm{~mm} \times 42 \mathrm{~mm} \times 32 \mathrm{~mm}$

Colour: orange

The unit must be driven by an emitter-follower YL6001 and has been designed to drive relays; load resistance $16 \Omega \mathrm{~min}$. Available output current max. 1.5 A.

NORBITS FOR INDUSTRIAL CONTROL

LOW-POWER AMPLIFIER UNIT YL6009

Colour: white
This unit has been designed as low-power amplifier to drive lamps or relays (load resistance 300Ω min.). Available output current max. 125 mA .

PHOTO-ELECTRIC DETECTOR HEAD YL6030

Colour: not coded
The unit consits of a photo-transistor used in a tempera-ture-compensated circuit. The light enters the unit via a lens with an adjustable diaphragm. The unit operates satisfactorily with lamphead YL6011 at distances up to 2.40 m.

Dimensions:
$112 \mathrm{~mm} \times 44.2 \mathrm{~mm} \times 34.6 \mathrm{~mm}$

LAMP HEAD YL 6031

Colour: not coded
The unit has the same type of housing as YL6030 and contains a 6 V lamp which can be used for various distances.

Colour: black

The unit is complementary to the standard NOR-unit YL6000 and comprises two NORcircuits. One circuit has three, the other two inputs. Either circuit can drive 6 NOR-units.

TIMER UNIT YL6015

Colour: brown

The unit consists of a RC delay circuit, coupled to a Schmitt trigger, and can provide delays in 3 ranges from 0.02 to 60 s , which can be realised by different interconnections outside the unit.

Connections:

Dimensions:
$64 \mathrm{~mm} \times 40.4 \mathrm{~mm} \times 75 \mathrm{~mm}$

LOADING TABLE

The inputs and outputs of the different units may be interconnected directly. The power required to drive one of the six inputs of a NOR-unit YL6000 is defined as one "DRIVE UNIT" (abbreviated to D.U.).
The amount of power which can be delivered by the YL6000 is 6 DRIVE UNITS. The following loading table is based on the above-defined "DRIVE UNIT" which is additive.

type	input power required	output power available
NOR-UNIT YL6000 $\ldots \ldots \mathrm{D}$		

Example:

One NOR-unit YL6000 is just able to supply the power (6 D.U.) for one Emitter Follower Unit YL6001. The YL6001, in turn, is capable of driving up to 17 NOR-units YL6000 or one medium-Power Output Unit YL6008 plus 3 NOR-units YL6000 etc.

The vane-switched oscillator unit consists of an oscillator and a diode rectifier. The latter is connected to a separate coupling winding of the oscillator coil, thus providing an isolated d.c. output.
The lay-out of the oscillator is such that upon inserting a suitable piece of metal (vane) in a gap between the oscillator coil windings, the oscillation stops and the d.c. output of the unit will drop to zero. The complete circuit is encapsulated in epoxy resin. The VSO can be applied as a static switching device, the switching action being determined by the position of the vane. For the vane any metal can be used.
The unit may be mounted in any position; two mounting holes allow the use of 4 mm bolts. Stacking of units is permitted. Connection can be made by 0.110 Faston tabs or by soldering.

The transducer converts the angular displacement of a shaft into electric signals. The robust casing of the transducer is so mounted that its expanding bellows presses against the shaft whose displacement is to be ascertained. Any rotation of the shaft is thus accompanied by a corresponding rotation of a slotted disk. The standard disk is provided with 250 radial slots. When this disk is turned, the partitions between the slots intercept the light directed by a self-focusing lamp onto a photo-transistor. Due to the presence of a mask with four slots, 4×250 output signals are produced per complete revolution of the shaft. These signals can be fed to a pulse shaper PS1 which may, for example, control a digital positioning system.

1. self-focusing lamp
2. slots
3. slotted disk
4. mask
5. photo-transistor
6. bellows
7. machine shaft
8. machine.

In the booklet "Counting units for programmed control" examples are given of the application of counting units in automatic number machines, time control equipment, and automatic distribution installations.

COUNTING UNITS FOR PROGRAMMED CONTROL

The series 88930 comprises a total of eight main units and three sub-units. The latter, the functions of which are also included in those of the main units, can be built in separately, if required.

frequency range $0-2 \mathrm{kc} / \mathrm{s}$	
maximum ambient temperature	$+45^{\circ} \mathrm{C}$
counting pulse	$\mathrm{V}=135 \pm 5 \mathrm{~V}$; duration $=25 \pm 10 \mu \mathrm{~s}$
reset pulse.	$\mathrm{V}=280 \mathrm{~V} ;$ duration approximately $100 \mu \mathrm{~s}$
output signal of relay tubes ... approx. 100 V at $100 \mathrm{k} \Omega$	
output power of relay amplifier.	0.8 VA at 600Ω

B68

description	type number
input/output unit	88930/30
preset counter	88930/33
two-programme unit	88930/36
four-programme unit	88930/37
output unit	88930/39
electronic reset unit	88930/54
relay unit	88930/60
power supply unit	88930/64
sub-units (without housing)	type number
pulse-shaper unit. programme initiator unit relay amplifier unit.	88930/48-1
	88930/51
	88930/57

All data-handling systems employ some sort of device for the storage of information. Such a "memory" can accept, store and supply the information at any required moment. For this purpose a magnetic core memory is very often used.
The storage capacity of a magnetic core is the result of its property to assume either of two stable magnetic states One magnetic state is maintained, until it is made to change into the other.
The main features which can be distinguished are as follows:

(1) read/write cycle time of only a
few microseconds;
(2) random access;
(3) the information can be stored for an indefinite period;
(4) storage of large quantities of information in a small volume.

The properties of the cores described below are such that the cores are specially suited for use in coincident current memories.
We draw your attention to the low-temperature-coefficient (LTC) cores, the electrical properties of which are substantially constant over a wide temperature range.

DEFINITIONS OF TERMS AND SYMBOLS

$I_{m}=$ peak value of the drive current.
The peak value of the drive current is the maximum amplitude of the pulse, disregarding overshoot and ripple.
$I_{w}=$ full write pulse.
The full write pulse will switch the core - when in the ZERO state - into the ONE state.
$I_{p w}=$ partial write pulse
$I_{r}=$ Full read pulse.
The full read pulse will switch the core - when in the ONE state - into the ZERO state
$I_{\mathrm{pr}}=$ partial read pulse
The partial read pulse will not switch the corewhen in the ONE state - into the ZERO state
D.R. $=$ disturb ratio,
the ratio of the partial drive current to the full drive current ($\left.\right|_{p w} / I_{w} ;\left.\right|_{p r} / I_{r}$).
$\mathrm{t}_{\mathrm{r}}=$ rise time.
Time interval between 0.1 Im and 0.9 Im points of the leading edge of the current pulse.
td $=$ pulse duration.
Time interval between $0.9 \mathrm{I}_{\mathrm{m}}$ points of the current pulse.

Drive current pulses

DEFINITIONS OF TERMS AND SYMBOLS

Responses.

$t_{p}=$ peaking time.
t_{p} is the core peaking time as measured from the time at which the leading edge of the $r V$, response reached the reference value ($V_{\text {ref }}$).
$\mathbf{t s}^{\prime}{ }^{\prime}=$ switching time
t_{s} is the time interval between 0.1 Im point of the leading edge of the current pulse and the time at which the trailing edge of the $r V$, response reached the reference value (V).
$V_{r e f}=$ the reference volcage that is usually, defined as 10% of the quaranteed $r V_{1}$ value of each individual core.

Test conditions

Tests are carried out on each individual core threaded with a single drive wire and a sense wire loaded with 100Ω (see figure above).
The cores are tested according to the test pattern given above. They are tested at an ambient temperature of $40^{\circ} \mathrm{C}$, except the low-temperature-coefficient (L.T.C.) cores, which are measured at the minimum and maximum permissible temperatures.
To provide for a 10% tolerance on the drive current, the tests are carried out with full write- and read-pulses of $0.9 \mathrm{I}_{\mathrm{m}}$ and with partial write- and read-pulses of $0.55 \mathrm{I}_{\mathrm{m}}$, corresponding to a disturb ratio of 0.61 .

Measured values

All cores must meet the requirements of minimum $r \mathrm{~V}_{1}$ and maximum permissible $w \mathrm{~V}_{z}$. The values of $r V_{1}$ and $w V_{z}$ are read after 32 partial read pulses and 32 partial write pulses respectively.
The $u \mathrm{~V}_{1}$ value is measured after one write pulse followed by one read pulse. Each core is, moreover, tested on its peaking time, switching time and UR value. In addition to the individual cores being tested, the distribution curves of the different parameters within a lot are checked.

SURVEY

Core type material type number		mil E1 9140 3.8 2.2 .5	80 4322020	$\begin{aligned} & \text { mil } \\ & 32 \\ & 032501 \\ & 55 \\ & 30 \\ & 58 \end{aligned}$
Measuring Conditions.	nominal conditions	test conditions	nominal conditions	test conditions
$\mathrm{I}_{\mathrm{m}}=$ drive current (mA)	345	310	450	405
D.R. = disturb ratio	0.5	0.61	0.5	0.61
$\mathrm{t}_{\mathrm{d}} \quad=$ pulse duration	12	25	2.5	$\geqslant 5$
$\mathrm{t}_{\mathrm{r}} \quad=$ pulse rise time linear . . . (us)	0.8	0.8	0.3	0.3
$\mathrm{V}_{\text {ref }}=$ reference voltage (mV)	8	5	9	7.2
T = ambient temperature . . . ${ }^{\circ} \mathrm{C}$)	40	40	40	40
Responses	typical	guaranteed	typical	guaranteed
r $\mathrm{V}_{1}=$ disturbed ONE output $\ldots(\mathrm{mV})$	115	$\geqslant 45^{1}$	104	$\geqslant 72$
$w V_{z}=$ disturbed ZERO output . . . (mV)	30	$<6^{2}$	18	$\leqslant 24$
$\mathrm{t}_{\mathrm{p}} \quad=$ peaking time μ (s)	3.5	-	0.8	0.75-1.0
$\mathrm{t}_{\mathrm{s}}=$ switching time (us)	8	$\leqslant 10.5$	1.8	$\leqslant 2.1$
Status .	Maintenance		Maintenance	
Core type	50 mil			
material	$\begin{gathered} \text { 6C1 } \\ 432202032541 \end{gathered}$		6 C 2	
type number			4322	32551
O.D. = outer diameter (mm)	1.27		1.27	
I.D. = inner diameter (mm)	0.76		0.75	
H = height (mm)	0.30		0.40	
Measuring Conditions . .	nominal conditions	test conditions	nominal conditions	test conditions
$\mathrm{I}_{\mathrm{m}}=$ drive current (mA)	500	450	755	680
D.R. = disturb ratio	0.50	0.61	0.50	0.61
$\mathbf{t}_{\mathbf{d}} \quad=$ pulse duration ($\mu \mathrm{s}$)	1.50	$\geqslant 2$	1.50	$\geqslant 2.5$
$\mathrm{t}_{\mathrm{r}} \quad=$ pulse rise time linear . . . $(\mu \mathrm{s})$	0.20	0.20	0.25	0.25
$\mathrm{V}_{\text {ref }}=$ reference voltage (mV)	4	3.6	5.	4.5
$\mathrm{T}=$ ambient temperature . . . ${ }^{\circ} \mathrm{C}$)	40	40	0-65	0-65
Responses	typical	guaranteed	typical	guaranteed
$\mathbf{r} \mathrm{V}_{1}=$ disturbed ONE output $\ldots .(\mathrm{mV})$	60	$\geqslant 36$	$65^{\circ} \mathrm{C}$	$\geqslant 33$
$w \mathrm{~V}_{\mathrm{z}}=$ disturbed ZERO output $\ldots(\mathrm{mV})$	8	$\leqslant 12$	7	$\leqslant 11$
$\mathrm{t}_{\mathrm{p}} \quad=$ peaking time $(\mu \mathrm{s})$	0.50	$0.41-0.57$	0.50	0.44-0.61
$\mathrm{t}_{\mathrm{s}} \quad=$ switching time $\mu \mathrm{s}$)	0.90	0.80-1.05	0.95	≤ 1.15
Status	Preferred		Preferred	

[^7]SURVEY

Core type material type number	50 mil6D5432202032519		$\begin{gathered} 30 \mathrm{mil} \\ \text { 6F2 } \\ 432202032571 \end{gathered}$	
O.D. $=$ outer diameter (mm) I.D. $=$ inner diameter (mm) H $=$ height (mm)		. 27		. 80
Measuring Conditions	nominal conditions	test conditions	nominal conditions	est conditions
$\mathrm{l}_{\mathrm{m}}=$ drive current (mA) D.R. $=$ disturb ratio	365 0.50	330 0.61	655 0.50	590 0.61
$\mathrm{t}_{\mathrm{d}}=$ pulse duration ($\mu \mathrm{s}$)	1.5	$\geqslant 4$	0.50	1.5
$\mathrm{t}_{\mathrm{r}}=$ pulse rise time linear . . . ($\mu \mathrm{s}$)	0.20	0.20	0.10	0.10
$\mathrm{V}_{\mathrm{ref}}=$ reference voltage (mV)	6	4.5	5	3.5
$\mathrm{T}=$ ambient temperature . . . ${ }^{\circ} \mathrm{C}$)	40	40	40	40
Responses $\mathrm{u}_{\mathrm{I}}=$ undisturbed ONE output..(mV)	typical	guaranteed	$\begin{gathered} \text { typical } \\ 54 \end{gathered}$	guaranteed -
$r V_{1}=$ disturbed ONE output $\ldots(m V)$	60	$\geqslant 42$	50	$\geqslant 35$
$w V_{z}=$ disturbed ZERO output . . . (mV)	10	$\leqslant 14$	8	$\leqslant 9$
$U . R .=u V_{1}-r V_{1}$. (mV)			4	$\leqslant 4.5$
$\mathrm{t}_{\mathrm{p}} \quad=$ peaking time $\mu \mathrm{s}$)	0.60	0.55-0.70	0.20	$0.19-0.25$
$\mathrm{t}_{4} \quad=$ switching time ($\mu \mathrm{s}$)	1.30	$\leqslant 1.60$	0.40	$0.35-0.45$
Status	Preferred		Preferred	
Core type material type number.	$\underset{6 \mathrm{~F} 3}{30 \mathrm{mil}}$		432202032611	mil Hi 32611
O.D. = outer diameter (mm)	0.82		0.55	
I.D. = inner diameter (mm)	0.50		0.35	
H = height (mm)	0.16		0.10	
Measuring Conditions . . .	nominal conditions	test conditions	nominal conditions	test conditions
$\mathrm{I}_{\mathrm{m}}=$ drive current (mA)	740	665	835	750
D R. = disturb ratio	0.50	0.61	0.50	0.61
$\mathrm{t}_{\mathrm{d}}=$ pulse duration μ (μ)	0.6	1.5	0.25	0.45
$\mathrm{t}_{\mathrm{r}} \quad=$ pulse rise time linear (us)	0.15	0.15	0.05	0.05
$\mathrm{V}_{\text {rep }}=$ reference voltage (mV)	5.0	3.5		
$\mathrm{t} \quad=$ ambient temperature . . . $\left({ }^{\circ} \mathrm{C}\right)$	10-70	10-70	40	40
Responses				
$\mathrm{r} \mathrm{V}_{1}=$ disturbed ONE output . . . mV$)$	$50\left(10^{\circ} \mathrm{C}\right)$	$\geqslant 25$	55	≥ 30
$\mathrm{W} \mathrm{V}_{\mathrm{z}}=$ disturbed ZERO output $\cdots(\mathrm{mV})$	10	$\leqslant 11$	6	≤ 10
U.R. $=\mu \mathrm{V}-\mathrm{r} \mathrm{V}$. (mV)	$0.1 \mathrm{rV}{ }_{1}$	$\leqslant 0.1 \mathrm{rV} \mathrm{V}_{1}$	0.080	-
$\mathrm{t}_{\mathrm{p}} \quad=$ peaking time $\left.\mu \mathrm{s}\right)$	0.25	$0.26-0.32$	-	- ${ }^{-}$
$\mathrm{t}_{\mathrm{s}}=$ switching time $\mu \mathrm{s}$)	0.50	$\leqslant 0.60$	0.17	≤ 0.20
Status	Preferred		Preferred	

MATRIX PLANES AND STACKS

GENERAL

The matrix planes and stacks mentioned in this booklet are specially designed for coincident current operation. They consist of a number of magnetic cores arranged in rows and columns through which four copper wires are threaded according to the MIT system, namely:
2 drive wires (" X " wire, " Y "' wire)
1 inhibit wire (" Z '" wire)
1 sense wire ("S" wire)

Magnification of part of a coincident current matrix plane exposing the 4 wires passing through each core

The matrix planes contain one, two or four matrices, for example $4 \times 16 \times 16$. Each matrix of the multiplex planes has a separate sense and inhibit wire. Each type of plane is available in two versions: a left-hand and a right-hand version. These two planes have a mirror-symmetrical tag lay-out. Matrix planes with $80 \mathrm{mil}, 50 \mathrm{mil}, 30 \mathrm{mil}$ and 20 mil cores are available in standard executions. On request matrices with 150 mil cores and matrices differing from the standard types can be supplied. A stack is composed of left-hand and right-hand planes, stacked alternately. In this way the tags of the adjacent planes are just above each other, which facilitates an easy interconnection of the drive wires. The stacks are delivered with the drive wires interconnected. Plates are added at the top and bottom of the stack for protecting the upper and lower planes. The total assembly is secured by bolts which pass through the corner holes of the planes.

Testing method

All cores in each plane are tested to make sure that the cores satisfy the specification. Planes are tested at $23^{\circ} \mathrm{C}$ with marginal drive currents (disturb ratio $0.62-0.63$).
Each core is tested with the pulse patterns given on next page.
The " 1 " output of each core is measured with all cores in the " 1 " (best pattern).
The cores are tested to guarantee a minimum permissible " 1 " output at maximum and minimum values of " t_{s} " and " t_{p} ".
Furthermore the cores are tested for disturb sensitivity by increasing the disturb ratio from 0.5 to 0.63 or higher values. This is done to measure the output with and without p.w.d. pulse. If the difference of these values exceeds a given limit, the cores are rejected. It is also checked whether the sense wire passes through all cores.

GENERAL

The " 0 " output of each core is measured with all cores in the " 0 " state (best pattern). The cores are tested to guarantee maximum permissible " 0 " output. At the same time it ensures that the inhibit wires pass through all cores and that the noise cancelation of the sense wire is adequate.
Sample tests are carried out with all the cores set in checkerboard pattern (worst pattern), for the peak value of the " 0 " output (peak delta noise) and the " 0 " output at peaking time of the " 1 " output. Besides the electromagnetical testing, the planes are tested on insulation resistance and on the d.c. resistances of the X-, Y-, Z - and S-wire. After assembly the stacks are functionally tested.

WITH 80 MIL CORES

Ferroxcube memory cores type 6 B 2 are threaded in two types of standardised frame, type A for maximum 32×32 cores and type B for maximum 64×64 cores. Both frames are made of special synthetic resin. The frames are provided with grooves to hold the wires that run to the soldering tags, The matrix planes are wired with copper enamelled wire SWG 36. (0.2 mm diameter). The types of the standard range are listed below.

Standard range of planes

number of cores	wiring				frame	type number
	x	Y	Z	S		$6 \mathrm{B2}$ core
32×32	1	1	1	1	A	B166913
32×32	1	1	1	1	A	B1 66914
64×64	1	1	1	1	B	B1 66926
64×64	1	1	1	1	B	B1 66927
$4 \times 16 \times 16$	1	1	4	4	A	B1 66928
$4 \times 16 \times 16$	1	1	4	4	A	B1 66929
$4 \times 10 \times 10$	1	1	4	4	A	B1 66916
$4 \times 10 \times 10$	1	1	4	4	A	B1 66917
16×16	2	2	1	1	A	B1 66924
16×16	2	2	1	1	A	B1 66925
32×32	2	2	1	1	B	B1 66921
32×32	2	2	1	1	B	B1 66922

Dimensions

frame	outer dimensions (mm)	pitch of mounting holes (mm)	diameter mounting holes (mm)	stacking height (mm)
A	112×112	80×80	4.3	7
B	202×202	170×170	5.3	8.5

Please indicate in your order whether the planes must be delivered separately or in stacks.

Stacks with 80 mil matrix planes are delivered with two protective covers of methacrylate.
The drive wires of the various matrix planes are connected in series.
The soldering tags are easily accessible for soldering.

MATRIX PLANES, STACKS AND BOXES

WITH 50 MIL CORES

The frames in which the matrices are mounted consist of 8 Standard Resin Bonded Fibre strips (S.R.B.F.) in 4 pairs. Between each pair of strips, gold-plated bronze tags for terminating the wires are inserted. The strips have grooves spaced at $50 \mathrm{mil}(1.27 \mathrm{~mm})$ in which the wires run to the soldering tags. On these tags the wires are wrapped and dip-soldered. The matrices are wired with enamelled copper wire S.W.G 40 (0.12 mm diameter). The cores are arranged according to the "closed" pattern configuration (see figures below). The sense wire consists of four parts: these are seriesconnected by interconnecting the corresponding soldering tags.

Matrix planes

The inhibit wires run parallel to the " X "" wires in the left-hand planes, and parallel to the " Y " wires in the right-hand ones. The planes containing one matrix are provided with extra parallel connections so that the inhibit-wire terminals are located above each other when the planes are stacked.
As can be seen from the figures a left-hand plane can easily be transformed into a right-hand one by turning it over 90°; only two interconnections of the sense wire must be changed.
The principal corner marked by a yellow dot indicates the crossing of the " X_{0} " and " Y_{0} " drive wires. For those cases where special requirements are imposed on the electrical and mechanical properties, lacquered matrices are available.

WITH 50 MIL CORES

Matrix stacks

The stacks are built-up of left-hand and righthand planes, stacked alternately. The tags of two adjacent planes are so near to each other that they can be dip-soldered. In this way all " X " and all " Y " drive wires of the stacked planes are series-connected. The "X" and "Y" drive lines thus obtained end on rigid terminals which are inserted in the termination planes at the top and bottom of the stack. On demand the stack can be provided with connection leads for the $X-, Y-, Z$ - and S-wires.
For stacks built-up from matrix planes containing two or four matrices, the termination plane at the top of the stack can be replaced by an interconnection plane. Interconnection wires in the latter connect one half of the " X " drive lines to the other half of the " X " drive lines; similar wires connect one half of the " Y "' drive lines to the other half. The beginnings and ends of all drive lines are thus accessible on tags in the bottom frame only.
Example: A stack with 5 matrix planes, $4 \times 16 \times 16$ cores, provided with an interconnection plane functions as a stack of 20 planes with 16×16 cores. The above-mentioned solution is attractive to obtain with the same number of bits a smaller stack height at a lower cost.
To identify the soldering tags of the stack, the bottom protection plate is marked $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, the top plate with E, F, G, H. The principal corner is indicated by a yellow dot (see photo).
This corner is determined by the crossing of the X_{0} and Y_{0} addresses. For testing the stack with the most unfavourable " 1 " and " 0 " outputs, the cores must be set in the worst-case pattern. It should be recognised that the worst-case patterns for the left-hand and right-hand planes in the stack are not identical.

Worst-case pattern left-hand planes

1	1	0	0	1	1	0	0	1	0	0	1	1	0	0	1
0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	1
0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0
1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0
1	1	0	0	1	1	0	0	1	0	0	1	1	0	0	1
0	0	1	1	0	0	1	1	1	0	0	1	1	0	0	1
0	0	1	1	0	0	1	1	0	1	1	0	0	1	1	0
1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0

MATRIX PLANES, STACKS AND BOXES

WITH 50 MIL CORES

Stacks mounted in boxes have the advantage of being protected against damage and dust. These boxes contain two identical aluminium end plates with apertures for the connection of the " X " and " Y " wires. The connections for the " S " and " Z " wires are on the side panels. All connections of the boxes are provided with taper-tab receptacles (AMP serial no. 78).
Two types of box are available: for matrix planes with up to 32×32 cores and for those with a maximum of 64×64 cores. The outer dimensions of these boxes are $145 \times 145 \mathrm{~mm}$ and $180 \times 180 \mathrm{~mm}$ respectively.
Up to 100 matrix planes can be housed in one box.

MATRIX PLANES, STACKS AND BOXES

WITH 50 MIL CORES

A number of current types has been standardised (see table below).
Each type can be supplied in three different executions, depending on the type of core requested.
The matrix planes are defined by the number of cores, the wiring and the type of core. In the table below the different standard types with the more important dimensions are indicated.

Matrix plane with 50 mil cores

Standard range

plane indication	wiring				number of cores	outer dimensions planes in mm		pitch of mounting holes in mm	
	X	Y	Z	5		length A	width B	length C	width D
02	1	1	1	1	32×32	80	80	59.5	59.5
03	1	1	1	1	64×64	120	120	110.2	100.2
06	1	1	4	4	$4 \times 16 \times 16$	85	85	64.5	64.5
07	1	1	4	4	$4 \times 32 \times 32$	125	125	105.2	105.2
08	1	1	4	4	$4 \times 64 \times 64$	208	208	186.7	186.7
09	1	1	2	2	$2 \times 16 \times 32$	80	85	59.5	64.5
10	1	1	2	2	$2 \times 32 \times 64$	120	125	100.2	105.2
13	2	2	1	1	16×16	80	80	59.5	59.5
14	2	2	1	1	32×32	120	120	100.2	100.2
17	2	2	1	1	$4 \times 8 \times 8$	85	85	64.5	64.5
18	2	2	1	1	$4 \times 16 \times 16$	125	125	105.2	105.2
20	2	2	1	1	$2 \times 8 \times 16$	80	85	59.5	64.5
21	2	2	1	1	$2 \times 16 \times 32$	120	125	100.2	105.2

Planes indicated in bold print are preferred types.

MATRIX PLANES, STACKS AND BOXES

WITH 50 MIL CORES

Composition of the type numbers

Matrix planes
plane indication
see p. 80
$C=6 C 1$ core
$D=6 D 5$ core
$L=6 C 2$ core
Stacks
Stack in box

$$
\begin{aligned}
& \text { plane indication } \\
& \text { see } p .80 \\
& C=6 C 1 \text { core } \\
& D=6 D 5 \text { core } \\
& L=6 C 2 \text { core }
\end{aligned}
$$

Examples

The type number of a left-hand matrix plane, lacquered, with 32×32 cores of ferroxcube 6C1 and wiring 1-1-1-1, is B8 62002/C24
The type number of a unlacquered stack containing 8 planes with 32×32 cores of ferroxcube 6C2 with interconnection plane is 88749 02/308.
The type number of the same stack in box is 88751 02/308.
Stack height is determined by
$(n+2) 4.9+10 \mathrm{~mm}$, where n is the number of planes.
Box height is determined by
$(\mathrm{n}+2) 4.9+50 \mathrm{~mm}$.

B8 620../...

$23=$ right-hand plane
24 = left-hand plane, lacquered
$25=$ right-hand plane, lacquered

B8 749 i. $/$ ii

B8 751

number of planes
2 = unlacquered
3 = unlacquered with interconnection plane
$4=$ lacquered
5 = lacquered with intercon-

MATRIX PLANES AND STACKS

WITH 30 MIL CORES

The mechanical design is similar to that of the matrix planes and stacks with 50 mil cores.
The frames are made of glass-epoxy of 4.9 mm thickness, the pitch of the grooves is 1.0 mm instead of 1.27 mm . The diameter for the " X ", " Y " and " S " wires is 0.08 mm ; the inhibit wire has a diameter of 0.1 mm . The matrices are provided with 6F2 cores and the L.T.C. cores 6F3.

All the matrices of the $\mathbf{3 0} \mathbf{~ m i l}$ standard range are lacquered, to reduce the magnetostriction of the cores caused by the steep leading edge of the inhibit pulse.
Unlacquered planes will be delivered on request only.
Each type of matrix plane has one execution (in contrast to the matrices with 50 mil cores). To obtain a very low noise level special attention is paid to the sense wiring. This has resulted in a new type of sense wire, which differs from the normal MIT sense wire. Consequently the worst-case pattern differs from that of the 50 mil type. Moreover, the "open" core configuration is applied instead of the "closed" core configuration used for the 50 mil matrices (see p. B77 and the figure below).

To reduce the crosstalk between the inhibit and sense wire, their connections are kept far apart, differing in this respect from the 50 mil planes.
In a stack, built up from standard planes, the adjacent planes are at 90° with respect to each other. In stacks built-up from four-fold planes the matrices are at 180° with respect to each other. In both cases the inhibit wires run parallel to the " X " wires in the one plane and to the " Y " wires in the adjacent plane.
For the stacks built up with four-fold planes, the termination plane at the top can be replaced by an interconnection plane. On request the stack can be delivered with connection leads. For testing the stack with the most unfavourable " 1 " and " 0 " outputs, the cores must be set in the worst-case pattern indicated below.

Worst-case pattern

1	0	0	1	1	0	0	1
0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	0
1	0	0	1	1	0	0	1
1	0	0	1	1	0	0	1
0	1	1	0	0	1	1	0
0	1	1	0	0	1	1	0
1	0	0	1	1	0	0	1

Standard range

plane indi- cation	wiring				number of cores	outer dimensions of planes in mm		pitch of mounting holes in mm	
	x	Y	Z	5		length A	width B	length c	width D
02	1	1	1	1	32×32	71	71	50.2	50.2
03	1	1	1	1	64 $\times 64$	104	104	82.3	82.3
06	1	1	4	4	$4 \times 16 \times 16$	75	75	51.5	51.5
07	\uparrow	1	4	4	$4 \times 32 \times 32$	108	108	86.3	86.3
08	1	1	4	4	$4 \times 14 \times 64$	173	173	151.3	151.3
09	1	1	2	2	$2 \times 16 \times 32$	75	71	51.5	50.2
10	1	1	2	2	$2 \times 32 \times 64$	108	104	51.5	50.2
24	1	1	4	4	128×128	173	173	151.5	151.5
25	1	1	2	2	$2 \times 64 \times 128$	173	173	151.5	151.5

Planes indicated in bold print are preferred types.

Composition of the type numbers

Matrix planes. . . B8 629../. 1	
Stacks	B8 758 . ./. 4 . . without interconnection plane
	B8 758 . ./. 5 . . with interconnection plane
Box	B8 761 . /. 4 . . with interconnection plane
	B8 761 ../. 5 . . without interconnection plane
	$\mathrm{M}=6 \mathrm{~F} 3$ cores

[^8]If desired 30 mil stacks can be supplied with connection leads.

MATRIX PLANES AND STACKS

WITH 20 MIL CORES

The matrices are provided with 6 H 1 cores and are lacquered. The mechanical design is similar to that of the 50 mil and 30 mil planes and stacks. The frames are made of glass-epoxy of 3.2 mm thickness, the pitch of the grooves is $0.635 \mathrm{~mm}(25 \mathrm{mil})$. The diameter for the wires is 0.06 mm . Special attention is paid to the sense wire configuration. The applied sense wire differs from the one used in the 30 mil planes.
For that reason the worst-case patterns of both are different. The tag lay-out and the connections for the sense and inhibit wires are identical to the 30 mil matrix planes (see figure). Also the composition of the 20 mil stack is the same as for the 30 mil stack, namely built-up with only one type of plane. For testing the stack with the most unfavourable "1'" and " 0 " outputs, the cores must be set in the worstcase pattern which is indicated below.

Worst-case pattern

1	0	1	0	0	1	0	1
0	0	1	1	1	1	0	0
1	1	0	0	0	0	1	1
0	1	0	1	1	0	1	0
0	1	0	1	1	0	1	0
1	1	0	0	0	0	1	1
0	0	1	1	1	1	0	0
1	0	1	0	0	1	0	1

Standard range

plane indication	wiring				number of cores	outer dimensions of planes in mm		pitch of mounting holes in mm	
	X	Y	Z	5		length A	width B	length C	width D
03	1	1	1	1	64×64	76	76	55.7	55.7
07	1	1	4	4	$4 \times 32 \times 32$	76	76	55.7	55.7
08	1	1	4	4	$4 \times 64 \times 64$	117	117	96.9	96.9
09	1	1	2	2	$2 \times 16 \times 32$	56	53	35.4	35.4
10	1	1	2	2	$2 \times 32 \times 64$	76	76	55.7	55.7
24	1	1	4	4	128×128	117	117	96.4	96.4
30	1	1	4	4	$2 \times 64 \times 128$	117	117	96.4	96.4

Planes indicated in bold print are preferred types.

Composition of the type number

Examples. The type number of a matrix plane with $4 \times 64 \times 64$ cores (core type 6 H 1) and wiring $1-1-4-4$, is B8 $64008 / \mathrm{N} 1$.
The type number of a matrix stack containing 8 planes with $2 \times 64 \times 128$ cores, is B8 $77030 / \mathrm{N} 108$. Stack height is determined by $(\mathrm{n}+2) 3.2 \mathrm{~mm}$.

If desired 20 mil stacks can be supplied with connection leads.

PLATRICES

If a matrix plane with cut frames contains a small number of cores, the cost of the frame forms an important part of the total price. For that reason we have introduced a new range of small matrix planes in an inexpensive frame, called a plate matrix or PLATRIX. The platrices are provided with LTC cores type K5 28 146/6C2 only, in a capacity range from 256 up to 1024 bits.
The wiring is according to the MIT-system. To reduce the required drive currents by a factor of two, each drive wire is threaded through the cores twice. In this manner matrix planes are obtained which can be used within a wide temperature range without need of current compensation. Comparatively low drive currents are neccessary for these matrices.
To keep the price of the platrices as low as possible, we have standardised them to 4 types, having different mechanical dimensions. Non-standard types can be supplied in large quantities only.

Construction

The cores and wires are affixed to a paper-base laminate plate by means of a special lacquer, which withstands wide temperature variations. This construction is highly shock- and vibration proof. The platrices are provided with special L-shaped tags on the edges of the plate. This construction facilitates the assembly of the platrices in the grid of a printed-wiring board.

Application

It is very attractive for applications in small bookkeeping-machines, invoice-machines, desk calculators, cash registers and machine-tool equipment, that the platrix can be provided with diodes and selection circuits on the same printed circuit board.

Technical data

The tags are mounted with the standard pitch of $0.1^{\prime \prime}(2.54 \mathrm{~mm})$, but on request the platrices can be supplied with a pitch of 2.50 mm in accordance with the German DIN. The platrices meet the MILspecifications STD202. The maximum permissible inter-winding voltage is 80 V .
The insulation resistance exceeds $100 \mathrm{M} \Omega$. Each core is tested with marginal drive currents for a minimum $r V_{1}$ value of 28 mV . The wiring diagram for the single and four-fold designs are shown in Figs. 1 and 2 respectively.

PLATRICES

Standard range

Standard platrices with code numbers are tabled below.

type number	number of cores	outer dimensions
B8 62601/L2	16×16	$82 \times 82 \mathrm{~mm}$
B8 62620/L2	$2 \times 8 \times 16$	$82 \times 82 \mathrm{~mm}$
B8 62617/L2	$4 \times 8 \times 8$	$82 \times 82 \mathrm{~mm}$
B8 62625/L2	$4 \times 10 \times 10$	$102 \times 102 \mathrm{~mm}$
B8 62620/L2	$4 \times 12 \times 12$	$100 \times 102 \mathrm{~mm}$
B8 62604/L2	16×32	$82 \times 122 \mathrm{~mm}$
B8 62629/L2	$2 \times 16 \times 16$	$82 \times 122 \mathrm{~mm}$
B8 62602/L2	32×32	$122 \times 122 \mathrm{~mm}$
B862609/L2	$2 \times 16 \times 32$	$122 \times 122 \mathrm{~mm}$
B8 62606/L2	$4 \times 16 \times 16$	$122 \times 122 \mathrm{~mm}$

Platrices with a pitch of 2.5 mm bear the same type number, but the indication behind the obligue becomes L1 instead of L2.
Stacks with platrices up to 4 pieces maximum can be supplied with series-connected drive wires.

Fig. 1
four-fold version

Fig. 2

COMPLETE MAGNETIC CORE MEMORIES

SURVEY

A magnetic core memory is a device for the storage of digital information, such as is intended for use in data-handling systems. A complete magnetic core memory contains a memory stack and the associated circuits to drive it, e.g. current drivers, read amplifiers, timing unit, selection system, address register and input/output register. It may also comprise the required power supplies. The systems mentioned below are all assembled in a standard mounting chassis, use being made of plug-in printed circuit boards to mount all the circuitry. The range of systems comprises the following types.

memory type	capacity		cycle time(μs)	$\begin{gathered} \text { access time } \\ (\mu s) \end{gathered}$	$\begin{aligned} & \text { core } \\ & \text { type } \end{aligned}$	circuit blocks	ambient temperature range $\left({ }^{\circ} \mathrm{C}\right)$
	words	bits/word					
$4 \mathrm{B5}$	256	8.... 40	5	1.4	6F3	20 series	$0 \ldots+65$
	1024						
	2048						
	4096						
4C20	256	$\leqslant 24$	20	8	6D5	100 series	$+10 \ldots+40$
	1024	$\leqslant \quad 12$					
	4096	$\leqslant 8$					
16D2	4096	4... 60	2	0.8	6F3	20 series	$0 \ldots+50^{\circ} \mathrm{C}$
	8192	4.... 60					
	16384	4. . . 50					
65 E15	65536	76	15	2	6D8	20 series	+10.. +40
16F1	16384	32	1	0.35	6 H 1		$+10 \ldots+40$

7Z47590A

1. Main characteristics
a. cycle time: $5 \mu \mathrm{~s}$
b. access time: $1.4 \mu \mathrm{~s}$
c. capacity:
$\left.\begin{array}{l}256 \text { words } \\ 1024 \text { words } \\ 2048 \text { words } \\ 4096 \text { words }\end{array}\right) 8$ up to 40 bits
d. circuit blocks of the 20 -series (equipped with silicon semiconductors)
e. core type used: 6F3 (LTC core)
f. ambient temperature: $0-65^{\circ} \mathrm{C}$
g. modes of operation:
read/restore
clear/write new information
split cycle, read/write new information
h. mechanical dimension (independent of the number of words and bits)
height 400 mm
depth 275 mm
width 444 mm
i. required power supplies: +12 V ; $-12 \mathrm{~V} ;+6 \mathrm{~V}$; $\max .9 \mathrm{~A}$ max. $2.5 \mathrm{~A} \max .2 .2 \mathrm{~A}$

COMPLETE MAGNETIC CORE MEMORIES

MEMORY TYPE 4B5

2. Special characteristics

a. logic levels: " 1 " $=+6 \mathrm{~V}$
$" 0 "=0 \mathrm{~V}$
b. Switch core matrices are used for the selection of the X and Y lines of the stack.
c. A protection circuit is included in all systems to prevent damage to the electronic circuits or faulty operation if the supplied voltages are 10% higher or lower than nominal. This protection circuits also prevents the information stored in the system from being destroyed when the equipment is switched on or off.
d. Optionally a memory exerciser (minitester) can be supplied, which checks the system according to the following four patterns:
all "1"
all "0"
double checkerboard
double checkerboard complement
In the event of an error, the faulty address and bit will be indicated by a combination of lamps

Mechanical dimensions of the tester:
height 133 mm
depth 275 mm
width 444 mm

memory exerciser 4B5 store

COMPLETE MAGNETIC CORE MEMORIES

1. Main characteristics
a. cycle time: $20 \mu s$
b. access time: $8 \mu \mathrm{~s}$
c. capacity:

256 words up to 24 bits
1024 words up to 12 bits
4096 words up to 8 bits
d. circuit blocks of the 100 -series
(equipped with germanium semiconductors)
e. core type used: 6D5
f. ambient temperature: $10-40^{\circ} \mathrm{C}$
g, modes of operation:
read/restore
clear/write new information split cycle, read/write new information
h. mechanical dimensions:

256 words, 20 and 24 bits stores
height 400 mm
depth 252 mm
width 444 mm
i. required power supplies:
+6 V ; max. 1.5 A
+6V; max. $5 A$
all other types height 266.6 mm depth 252 mm width 4444 mm
2. Special characteristics
a. logic levels: "1" $=-6 \mathrm{~V}$
$" 0$ " $=0 \mathrm{~V}$
b. group selection system is used to select the cores.

COMPLETE MAGNETIC CORE MEMORIES

MEMORY TYPE 16C10

1. Main characteristics
a. cycle time: $\quad 10 \mu \mathrm{~s}$
b. access time: $3.5 / \mathrm{s}$
c. capacity:

16348 words up to 32 bits
8192 words up to 32 bits
d. open circuits (equipped with silicon semiconductors)
e. ambient temperature: $0-50^{\circ} \mathrm{C}$
f. modes of operation:
read/restore
clear/write new information
split cycle
split cycle, read/write new information
read only (in $4 / / s$)
write only (in 4 us)
g. mechanical dimensions:
height 850 mm (for largest
store)
depth 485 mm
width 444 mm
h. this system is delivered with the required power supplies (power consumption: max. 220 V, 3 A).
2. Special characteristics
a. logic levels: "1" $=+6 \mathrm{~V}$
$" 0 "=0 V$
b. optional extras:
level shifting circuits
memory exerciser
sequential addressing and sequential interlace

COMPLETE MAGNETIC CORE MEMORIES

MEMORY TYPE 16D2

1. Main characteristics

a. cycle time: $\quad 2 \mu \mathrm{~s}$
b. access time: $0.75 \mu \mathrm{~s}$
c. capacity: 4096 words
8192 words 4 up to 60 bits
16384 words 4 up to 50 bits
d. circuit blocks of the 20 -series (equipped with silicon semiconductors)
e. core type used: 6F3 (LTC core)
f. ambient temperature: $0-50^{\circ} \mathrm{C}$
g. modes of operation:
read/restore
clear/write new information
split cycle, read/write new information
h. mechanical dimensions (dependent on the number of words and bits):
height 1300 mm
depth 275 mm
width 444 mm) 50 bits store
i. required power supplies:
+12 V; 16.5 A
$-12 \mathrm{~V} ; 10.3 \mathrm{~A}$
+6 V ; 7.0 A
+48 V ; 10 A $+10 \mathrm{~V} ; 2.75 \mathrm{~A}$
for the 16384 words, 50 bits store

2. Special characteristics
a. logic levels: "1" $=+6 \mathrm{~V}$

$$
" 0 "=0 \mathrm{~V}
$$

b. The system is provided with a transformer selection system
c. All printed circuit boards are provided with monitoring points (test points)
d. Optional extras:

1. power supply control unit:
to avoid loss of information during switching on and off;
to switch off the system if any voltage or current exceeds its specified values
2. integrated tester for fault-finding according to the following patterns:
all "1"
all " 0 "
double checkerboard
double checkerboard complement

COMPLETE MAGNETIC CORE MEMORIES

MEMORY TYPE 65E15 (mass memory)

1. Main characteristics
a. cycle time: $15 \mu \mathrm{~s}$
b. access time: $2 \mu \mathrm{~s}$
c. capacity:

65536 words of 76 bits
d. circuit blocks of the 20 -series (equipped with silicon semiconductors)
e. core type used: 6D8
f. ambient temperature range: +10 to $+40^{\circ} \mathrm{C}$
g. modes of operation:
read/restore
clear/write new information
split cycle, read/write new information
h. mechanical dimensions: the dimensions of a complete store, including power supplies, integrated tester control panel, are: $192 \times 80 \times 66 \mathrm{~cm}$
i. power supplies: power supplies are incorporated in the store input: 110/125/145/200/220/245 V_{ac}, $50 / 60 \mathrm{c} / \mathrm{s}$, power consumption: approx. 800 VA
2. Special characteristics
a. logic levels:

input:	"1":	2.5 V over 75Ω
	"0":	1 V over 75Ω
output:	"1":	$40 \mathrm{~mA}($ in $75 \Omega)$
	" 0 ":	$1 \mathrm{~mA}($ in $75 \Omega)$

b. Switch core matrices are used for the selection; type 6S2 core is used.
c. The store comprises:

1. power supplies $(+12 \mathrm{~V} ;-12 \mathrm{~V} ;+6 \mathrm{~V} ;-50 \mathrm{~V})$
2. check panel (to check voltages and currents)
3. memory exerciser testing the system according to the following patterns:
all "1"
all " $0^{\prime \prime}$
double checkerboard
double checkerboard complement
d. All printed circuit cards are provided with monitoring prints.

COMPLETE MAGNETIC CORE MEMORIES

MEMORY TYPE 16F1

1. Main characteristics
a. cycle time: $1 \mu \mathrm{~s}$
b. access time: 350 ns
c. capacity:

16384 words of 32 bits
d. core type used: 6H1
e. ambient temperature: 10 to $40^{\circ} \mathrm{C}$
f. modes of operation:
read/restore
clear/write new information
split cycle, read/write new information
g. the mechanical dimensions for a 16384 word 32 bit system are:
height: $\mathbf{8 2 0} \mathrm{mm}$
depth: 500 mm
width: 600 mm
h. required power supplies: +12 V ; 5 A

$$
-12 V ; 6 \mathrm{~A}
$$

$$
+26 \mathrm{~V} ; 14 \mathrm{~A}) 32 \text { bits store }
$$

2. Special characteristics
a. logic levels:
input: logic"1": $12 \mathrm{~V}: \pm 2 \mathrm{~V}$
logic " 0 ": $\quad 0 \mathrm{~V} ; \pm 1.5 \mathrm{~V}$
output: logic "1": $10 \mathrm{~V} ;+30 \mathrm{~mA}$
logic "0": +1.5 V ; -36 mA
b. transformer selection is used.
c. Optional extras:
level shifting circuits memory exerciser

MOUNTING AIDS

MOUNTING AIDS AND ACCESSORIES FOR CIRCUIT BLOCKS

Mounting chassis

Two standardised types of chassis for the mounting of circuit blocks are available, both designed to be fitted in $19^{\prime \prime}$ racks.
The chassis of Fig. 1 can contain up to 21 standard printed-wiring boards together with their mating connectors type $\mathrm{F} 045 \mathrm{CC} / 025$, and can be mounted directly in a $19^{\prime \prime}$ rack.

The chassis of Fig. 2 can contain up to 19 circuit blocks mounted side by side.
A number of these chassis can be mounted in a metal frame. Fitted in a standard $19^{\prime \prime}$ rack, 6 of these chassis can be mounted side by side.

MOUNTING AIDS AND ACCESSORIES FOR THE 10 SERIES AND 20 SERIES

Type number B871611 fig. 1

This chassis can contain up to 21 standard p.w. boards together with their mating connectors, type F045CC025 (single-sided contacts) or type F045KC/025 (double-sided contacts).

MOUNTING AIDS AND ACCESSORIES FOR CIRCUIT BLOCKS

Mounting chassis

This universal type of chassis for mounting circuit blocks of the 100 series, 10 series and 20 series and many other components is designed to be fitted in 19" racks.
The chassis can contain 21 printed-wiring boards with a length of 204 mm . Connector types F045 and F047 can be used.
A latch firmly locks the p.w. boards and prevents dislodgement due to vibration.
A number of these chassis (height 133 mm) can be mounted in metal frame. Six chassis can be mounted side by side in a standard 19" rack.

Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Mounting chassis

Type B871613 for connector 242202052591
Type B871615 for connector F047

TRANSISTORIZED POWER SUPPLY UNITS

These units permit a quick assembly of a variety of power supplies delivering unstabilised as well as stabilised output voltages between 1 and 39 V , at currents ranging between 0.25 and 5 A

Available types

Tentative data +24 and -24 Volts supply unit

$$
\begin{array}{ll}
\text { mains voltage } & 200-220-240 \mathrm{~V}+10 \%-15 \% \\
\text { mains frequency } & 45-60 \mathrm{c} / \mathrm{s} \\
\text { dimensions } & 25 \times 7 \times \max 9 \mathrm{~cm} .
\end{array}
$$

positive output		negative output	
voltage +24 V 10% current $50 \mathrm{~mA}^{2}$ ripple	$<200 \mathrm{mV}_{\mathrm{rms}}$		

[^9]The new power supply units both for $+6 /-6 \vee$ and $+12 /-12 \vee$ are designed for use with circuit blocks and for universal supply of transistorised circuits. The supply units fit into the 19 " mounting chassis B8 71610, B8 71611, B8 71613 and B8 71615.

Data	$+6 /-6 \vee$ supply type number B8 91000	$+12 /-12 \vee$ supply type number B891003
mains voltage mains frequency fusing storage temperature operating temperature	$\begin{aligned} & 220 \mathrm{~V} \text { and } 235 \mathrm{~V} \\ & +10 \%-15 \% \\ & 50-60 \mathrm{c} / \mathrm{s} \\ & 1 \mathrm{~A} \text { fuse in primary } \\ & -20^{\circ} \text { to }+75^{\circ} \mathrm{C} \\ & -20^{\circ} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	95-125 V in steps $190-250 \mathrm{~V}$) of 5 V $45-65 \mathrm{c} / \mathrm{s}$ automatic $\begin{aligned} & -20^{\circ} \text { to }+75^{\circ} \mathrm{C} \\ & -20^{\circ} \text { to }+65^{\circ} \mathrm{C} \end{aligned}$ itput
voltage current stability ratio ripple internal resistance internal impedance at $10 \mathrm{kc} / \mathrm{s}$ at $100 \mathrm{kc} / \mathrm{s}$ temperature coefficient at no load	$\begin{aligned} & +6 \mathrm{~V} \text {, adjustable } \pm 5 \% \\ & 150 \mathrm{~mA} \\ & >200: 1 \\ & <50 \mathrm{mV} \text { rms } \\ & 0.5 \Omega \\ & <0,5 \Omega \\ & 1 \Omega \text { approx. } \\ & +6 \mathrm{mV} \text { per deg. } \mathrm{C} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & 1 \mathrm{~A} \\ & >500: 1 \\ & 0.35 \mathrm{mV} \text { rms } \\ & <55 \mathrm{~m} \Omega, 0-100 \% \text { load } \\ & \\ & +0.075 \mathrm{mV} \text { per deg. } \mathrm{C}^{1} \\ & +0.038 \mathrm{mV} \text { per deg. } \mathrm{C}^{2} \\ & \text { utput } \end{aligned}$
voltage current stability ratio ripple internal resistance internal impedance at $10 \mathrm{kc} / \mathrm{s}$ at $100 \mathrm{kc} / \mathrm{s}$ temperature coefficient at no load	$\begin{aligned} & -6 \mathrm{~V} \text {, adjustable } \pm 5 \% \\ & 600 \mathrm{~mA} \\ & 300: 1 \\ & <50 \mathrm{mV} \mathrm{r}_{\mathrm{rms}} \\ & <0.3 \Omega \\ & <0.2 \Omega \\ & 1 \Omega \text { approx. } \\ & -3 \mathrm{mV} \text { per deg. } \mathrm{C} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & 400 \mathrm{~mA} \\ & 30: 1 \\ & 1 \mathrm{mV} \text { rms } \\ & <0.2 \Omega, 0-100 \% \text { load } \\ & \\ & -0.45 \mathrm{mV} \text { per deg. } \mathrm{C}^{1} \\ & -0.1 \mathrm{mV} \text { per deg. } \mathrm{C}^{2} \end{aligned}$

The units can be mounted into the $19^{\prime \prime}$ mounting chassis B8 716 10, B8 71613 and $B 871615$. The base plate of the power supplies serves as a side panel in the $19^{\prime \prime}$ mounting rack. One of the side panels of the mounting rack is therefore replaced by the base plate of the power supply.
${ }^{1}$ Full load ${ }^{2}$ Half load

UNIVERSAL MODULAR POWER SUPPLIES

TRANSISTORIZED POWER SUPPLY UNITS

A new series of power supply modules is being developed. Several modules can be assembled to a power supply unit to suit requirements of voltage (from 5 V up to 60 V), current (up to 10 A) and stability.

Tentative data

Internal resistance	$<5 \mathrm{~m} \Omega$
Internal impedance at $500 \mathrm{kc} / \mathrm{s}$	$<50 \mathrm{~m} \Omega$
Ripple	$<1 \mathrm{mV}$ rms
Stability ratio	$1000: 1(10 \%$ input change gives
	$0,01 \%$ change in output $)$
Temperature coefficient	$<0,001 \%$ per deg. C
Temperature range	-10 to $+65^{\circ} \mathrm{C}$
Fusing	automatic electronic overload protection
Sensing	provisions for local and remote sensing

The supply units can be mounted in standard 19" racks.

A few rypes of professional high-quality switch have been developed.

The following types are available:
FC21051 (Fig. 1)
Simple normal ten-position switch with two desks.
Colour code: yellow
FC21060 (Fig. 2)
Decade decoding switch, code 1.2.4.2. containing: a thumb-driven 10 -position switch with $0-9$ indication

a decoding circuit incorporated
a negative gate with 4 inputs
Colour code: red.
FC21061 (Fig. 2)
Decade decodingswitch, code 1.2.4.8. containing the same as type FC21060.

Colour code: grey
Under development:

FC21062

12-position switch with two desks.

Fig. 1.

Fig. 2.

DECADE SWITCHES

Fixing

The switches can easily be mounted on front panels up to 2 mm thickness without tools orscrews. Up to six switches can be clicked into a grey nylon mounting plate (see figure) which is mounted on the front panel. The output tags can be soldered directly into a 2 inch-grid printed-wiring board.

Nylon fixing plates

Available for 1 up to and including 6 switches. Development type numbers: 1 switch FC00155

2 switches FC00156
3 switches FC00157
4 switches FC00158
5 switches FC00159
6 switches FC00160

Connections

5	4	3	2	1	C	0	9	8	7	6
-		-	-	-		-	-	-		-
-		-	-	-		-	-	-		-
4	3	2	1	0	C	9	8	7	6	5

Nominal current 0.5 A
Maximum permanent current 1 A
Over-current during 5 s $5 \times$ nominal load
Maximum voltage $500 \mathrm{~V}_{\mathrm{dc}}$
Insulation resistance at 100 V
$\mathrm{R}_{\mathrm{i}}>1 \mathrm{k} \Omega$ at 100 V
Contact resistance at $1 \mathrm{Mc} / \mathrm{s}$
$\mathrm{R}_{\mathrm{c}}<25 \times 10^{-4}$
Capacitance at $1 \mathrm{Mc} / \mathrm{s}$ (one contact against all others earthed).
Minimum current for guaranteed \mathbf{R}_{e}
$C_{p}<15 \mathrm{pF}$
Tested lifetime
10 mA
Operating force for switching
200,000 full turns
Test voltage during 1 minute:
(a) between any connection and ground and
(b) between any two adjacent connections

In the microwave field many components are available, others are under development.
Due to the fact that the tubes, the ferrites, the magnets and all the necessary materials have been developed and are produced in the same factory, their quality and reliability are really outstanding. Components are available in a wide frequency range: about 400 to $40.000 \mathrm{Mc} / \mathrm{s}$.

1. Ferrite components as isolators, circulators, 3 -ports, 4 -ports, switches, etc.
2. Amplifiers and oscillators as well as power output stages.
3. Hardware as bends, twists, coaxial lines for waveguide transitions, tapers, etc.

As a rule the following guaranteed specification for isolators e.g. is given:
Insertion loss $<0.5 \mathrm{~dB}$
Attenuation $>30 \mathrm{~dB}$
VSWR over the whole band 1.05 and less than 1.02 over a bandwidth of $50 \mathrm{Mc} / \mathrm{s}$ around any centre frequency in the band. All the components have the standardized JAN, WR or IEC waveguides. IEC flanges are standard.

The finishing is silver-plated plus goldplated and in the standard G.P.O. (P.T.T.) grey colour.

Mixers, parametric amplifiers, masers and suchlike will soon be available.
The photographs show a few samples of units and components.

More types of integrated building bricks such as amplifiers plus isolators plus coaxial line-to-waveguide adaptor are also available.

For further details, technical advice etc. please contact the professional group of the Icoma division.

MICROWAVE UNITS

FERRITE ISOLATORS

Some types of isolators

type	frequence$(M c / s)$	atten- vation (dB)	$\begin{aligned} & \text { loss } \\ & (d B) \end{aligned}$	VSWR	waveguide	
					IEC	RETMAIMIL WR/RG
Field-displacement types						
B873200	3400-3800	>30	<0.8	$<1.051,{ }^{2}$	R40	2291-
B873240	3800-4200	>30	<0.8	$<1.051,2$	R40	229/-
B873201	3800-4200	>30	<0.8	$<1.051,2$	R48	187/49
B873202	4200-4600	>30	<0.5	$<1.051,2$	R48	187/49U
B873203	4600-5000	>30	<0.5	$<1.051,2$	R48	187/49U
B873206	5925-6425	>30	<0.5	$<1.051,2$	R70	137/50U
B873208	6825-7125	>30	<0.5	$<1.05^{1,2}$	R70	137/50U
B873209	7125-7425	>30	<0.5	$<1.051,2$	R70	137/50U
B873210	7425-8025	>30	<0.5	$<1.031,4$	R70	137/50U
B873211	7700-8500	>30	<0.5	<1.051, 2	R84	112/514
B873215	10700-11700	>30	<0.8	$<1.05^{1,2}$	R100	90/52U
B873217	12500-13500	>30	<0.5	$<1.05{ }^{1,2}$	R140	62/92U
Resonancetypes 88936/00	3800-4200	$>30^{3}$	1^{3}	$<1.10^{1}$	R48	187/49U

${ }^{1}$ In the specified frequency range.
${ }^{2}$ The VSWR in a band of $40 \mathrm{Mc} / \mathrm{s}$ around each centre frequency can be matched to <1.02.
${ }^{3}$ In a band of $50 \mathrm{Mc} / \mathrm{s}$ around each centre frequency in the specified frequency range. To be adjusted by a magnetic shunt.

- The type B873210 has no matching screws.

All isolators have standardised IEC flanges.
Isolators for high-power on requesr.
B104

3-PORT COAXIAL CIRCULATORS

frequency Mc/s	atten- uation (dB)	loss (dB)	VSWR	type connector	type number
$1900-2300$	>20	<0.75	<1.15	N	43220205001
$1900-2100$	>20	<0.75	<1.10	N	4320205002
$2100-2300$		<1.20	N	4	
$2100-2300$	>20	<0.75	<1.10	N	43220205003
$1900-2100$	>20	<0.6	<1.10	N	43202050041
$2500-2900$	>20	<0.6	<1.20	N	432202050051
$2200-3000$					

Three-port circulators are also available for the frequency ranges $450-470 \mathrm{Mc} / \mathrm{s}$ and $470-860 \mathrm{Mc} / \mathrm{s}$ (high power). Other types on request.

3-PORT CIRCULATOR

Specification: $3600-4200 \mathrm{Mc} / \mathrm{s}$; $>25 /<0.4 \mathrm{~dB}$; VSWR <1.08, in WR229 (=R40)

4-PORT CIRCULATORS

$A=f$ lange $I E C-P D R 70$ etc.
$B=$ flange $I E C-U E R 70$ etc.

These circulators are available in the frequency range of about $6000 \mathrm{Mc} / \mathrm{s}-13500 \mathrm{Mc} / \mathrm{s}$ with a bandwidth of 4%
Specification: $>\mathbf{2 5} /<0.4 \mathrm{~dB} ;$ VSWR <1.10
Other frequency ranges on request, for instance about $3500-4500 \mathrm{Mc} / \mathrm{s}$ in one range, etc.

Typical curves of a 4-port circulator in the frequency band $7425-7725 \mathrm{Mc} / \mathrm{s}$.

Cut-away view of a $4000 \mathrm{Mc} / \mathrm{s}$ amplifier

The amplifiers are available under the following type numbers:
Amplifier block without radiator . B873300
Amplifier block with radiator . . B873301
Radiator K399512
Microwave triodes EC157 and EC158

Frequency
Output with EC158
Gain
Bandwidth 0.1 dB
$G \times B$
Filament
Anode Voltage

3700-4200 Mc/s
about 5 W
14 dB
$32 \mathrm{Mc} / \mathrm{s}$
800
$6.3 \mathrm{~V} \pm 2 \%$
180 V

OTHER COMPONENTS FOR MICROWAVE EQUIPMENT

Apart from the microwave building bricks mentioned, a great variety of microwave components is available or under development, such as:

Loads (any waveguide) VSWR <1.03 (A); matchable short-circuit; transitions (coaxial to waveguide) VSWR about 1.10 (B and C); gas shutters VSWR <1.03 (D); waveguide bends E and H ; quick-release waveguide clamps B873401 (E); tuning key for isolators and amplifiers K399619 (screw head 5.1 mm square) (F).
Moreover, under development: mixers; switches for up to $13500 \mathrm{Mc} / \mathrm{s}$; filters (tunable); parametric amplifiers and mixers, hybrids, attenuators, etc.

These data are provisional.

Sensitivity

54 dB at $1000 \mathrm{c} / \mathrm{s}$ with reference to $1\left(\mathrm{~N} / \mathrm{m}^{2}\right)^{2} / \mathrm{W}$; measured in combination with a suitable ear-piece and an artificial ear having a chamber volume of $6 \mathrm{~cm}^{2}$.

Frequency response

A typical frequency response curve is shown in Fig. 3 indicating also the limits in between which the response curves are guaranteed.

Impedance

$350 \Omega \pm 20 \%$ at $1000 \mathrm{c} / \mathrm{s}$.

Main constructional features

Nickel-plated brass case, rigid magnetic circuit and adequate protection against moisture and dust. Dimensions are given in Fig. 2.

Weight

80 grammes

Fig. 1. Test circuit

Fig. 2

Fig. 3

Sensitivity

$20 \mathrm{mV} / \mu \mathrm{B}$
at sound pressure of 80 phon and a frequency of $1000 \mathrm{c} / \mathrm{s}$.
Frequency response
A typical frequency response curve is shown in Fig. 3, indicating also the limits in between which the frequency response curves are guaranteed.

Resistance

$100 \Omega(70-150 \Omega)$ at approximately $\mathrm{I}=30 \mathrm{~mA}$.

Stability

EMF generated at noise of 80 dB (absolute) will vary less than 2 dB if $1000 \mathrm{c} / \mathrm{s}$ sound pulses of 100 dB are superimposed.

Main constructional features

Nickel-plated brass case; metal diaphragm; carbon chamber consisting of insulating ring, gold plated lower and upper electrodes. Excellent moisture protection. Dimensions are given in Fig. 2.

Weight

35 grammes

Fig. 1. test circuit

Fig. 2.

Fig. 3.

ULTRASONIC DELAY LINES

Ultrasonic delay lines provide storage of analogue and digital information for periods up to several milliseconds. The lines consist of a transmitting transducer, an acoustic transmission medium and a receiving transducer. The electrical input is converted into an ultrasonic wave which is propagated through the medium and then converted again into an electrical signal. The speed of the ultrasonic wave is slow compared with that of an electromagnetic wave, so that comparatively large delays can be accommodated in a convenient size.

Several types of delay lines are in our programme:

1. Fused quartz lines, acoustic bandwidth approximately 0.5 of the carrier frequency.

Standard carrier frequencies are e.g. 7, 15 and $30 \mathrm{Mc} / \mathrm{s}$.
Temperature coefficient of the delay: 70 parts per 10^{6} per ${ }^{\circ} \mathrm{C}$.
2. Mercury lines are important for frequencies above $20 \mathrm{Mc} / \mathrm{s}$.

Available in fixed and variable ($25-330 \mu \mathrm{sec}$. e.g.) versions.
Temperature coefficient -3 parts per 10^{4} per ${ }^{\circ} \mathrm{C}$.
3. Wire lines for applications with multiple transducers and a large range of adjustment (by using torsional modes up to several milliseconds and storage capacity of over 1000 bits-equivalent to a bandwidth of approximately $1 \mathrm{Mc} / \mathrm{s}$ for a 1 ms line).
Temperature coefficient 10 parts per 10^{6} per ${ }^{\circ} \mathrm{C}$.

DELAY MODULE

The YL2108 delay module contains an ultrasonic delay line and associated transistorised input and output electronics. It is suitable for use with existing circuit block systems or is directly adaptable to fit other requirements; either n-p-n or p-n-p logic systems are catered for in the input, output and power supply requirements.

The delay is within the range 100μ s to $3200 \mu \mathrm{~s}$ as specified by the customer, with a fine adjustment in value by a preset control. For lines with the shorter delay the maximum pulse repetition frequency is $400 \mathrm{kc} / \mathrm{s}$ falling to $250 \mathrm{kc} / \mathrm{s}$ for the $3200 \mathrm{\mu s}$ delay line.

The input circuit of the unit is a voltage-level discriminator with the trigger level set at 1.5 V . Negative-going edges in the range $20-350$ nanoseconds per volt will result in reliable operation. The negative-going output pulse is of constant amplitude and the width is preset to one of three values dependent on the p.r.f. in use.

Delay:	$100 \mu \mathrm{~s}$ to $3200 \mu \mathrm{~s}$ Fine adjustment $\pm 10 \mu \mathrm{~s}$
Pulse Reperition Frequency:.	$400 \mathrm{kc} / \mathrm{s}$ maximum for short delay lines $250 \mathrm{kc} / \mathrm{s}$ maximum for long delay lines
Temperature Range:	$-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Temperature Coefficient of delay:	From -5 parts per million deg.C for long lines, to +50 parts for very short delay lines
Supply:	$12 \vee \pm 5 \%$, including ripple load current 100 mA at maximum frequency falling to 50 mA quiescent
Input Drive Current: .	Not to exceed 25 mA peak, 5 mA average over any 50 ms period
Output Signal Amplitude:	Unloaded 6.5 V nominal from a source impedance of 700Ω
Output Pulse Width: . .	$1.3 \mu \mathrm{~s}, 400 \mathrm{kc} / \mathrm{s}$

Pulse width	Max. P.R.F.
$1.3 \mu \mathrm{~s}$	at
$2.6 \mu \mathrm{~s}$	$400 \mathrm{kc} / \mathrm{s}$
$4.0 \mu \mathrm{~s}$	at

Logic Output

Current at logic 0: $1.2 \mathrm{~mA}_{\mathrm{dc}}$ with +6 V supplies
Amplitude at logic 1: not less than 5 V

Dimensions:

$24.5 \times 17.3 \times 4.1 \mathrm{~cm}$

supply	terminal			$\begin{array}{c}\text { output pulse } \\ \text { excursions }\end{array}$
+12 V	+12 V	0	-	0

supply\end{array}\right]+6 \mathrm{~V}\) to 0

FERRITE RECORDING HEADS

For these heads a very high-density ferrite is used. The gaps are made by a glass bonding technique which guarantees sharply defined gap edges. This technique gives also the possibility of making multitrack heads with well-aligned gaps.
Ferrite recording heads offer the advantage of low losses and great wear resistivity.
The heads are potted in a metal case. The coil connections as well as an earthconnection to prevent static charge of the head are accessible at the under side; they are designed as solder tags.

Standard gap lengths are $2,3.5,6.5,12$, 20 microns. The gap height depends on the application and can be for instance 50-200 microns.

A range of heads in the following fields is available: Audio, analog data recording, digital recording with either single or dual gap per track, video, floating heads for drums and discs, modulating heads in static recording. All these heads are available in single or multitrack version, for instance:

1/4 inch 1, and 2 tracks, also 1-3 or 2-4 stereo
1/2 inch 3, 4, 7 and 8 tracks
1 inch 7 (or $7+1$) and 17 tracks

Record-head 43220204027

Replay-head 43220204028

reference level $32 \mathrm{mH} / \mathrm{mm}$	$3.8 \mathrm{mV} \pm 10 \%$
gap length	$3 \mu \mathrm{~m}+1-0$
inductance (1 kHz-100 mV	$75 \mathrm{mH} \pm 15 \%$
Q-factor at 1 kHz	20
Q-factor at 10 kHz	45
d.c. resistance	$13 \pm 2 \Omega$
insulation (200 V)	$1000 \mathrm{M} \Omega$
The output voltage of 3.8	$\pm 10 \%$ applies
to the whole tolerance ran	of $\mathrm{L}=75 \mathrm{mH}$
15\% (abt 65-85 mH).	

reference level $32 \mathrm{mH} / \mathrm{mm} .3 .8 \mathrm{mV} \pm 10 \%$
gap length $3 \mu \mathrm{~m}+1-0$
inductance ($1 \mathrm{kHz}-100 \mathrm{mV}$. . $75 \mathrm{mH} \pm 15 \%$
Q-factor at 1 kHz 20
Q-factor at 10 kHz 45
d.c. resistance $13 \pm 2 \Omega$
insulation (200 V) $1000 \mathrm{M} \Omega$
The output voltage of $3.8 \mathrm{mV} \pm 10 \%$ applies to the whole tolerance range of $\mathrm{L}=75 \mathrm{mH}$ $\pm 15 \%$ (abt $65-85 \mathrm{mH}$).

PROFESSIONAL FERRITE RECORDING HEADS

For reference sake some tentative data of typical heads are given below:

Description	Tape (inch)	No of tracks	Track width (mm)	Gap (micron)	$\begin{aligned} & \text { Ind. } \\ & (m H) \end{aligned}$	Bias (mA)	Output (mV)	Write curr. (mA)
Digital, dual gap								
write	$\frac{1}{2}$	7	1.2	12	0.2			35
read	$\frac{1}{2}$	7	0.8	6	0.8		30	
write	1	8	2	12	0.1			35
read	1	8	1.27	6	1.5		50	
Audio full track								
write	4	1	6.25	6	7	4.5		0.85
read	$\frac{1}{4}$	1	6.25	3	75		3.8	
,, halftrack								
write	$\frac{1}{4}$	2	2.2	6	7	3.2		0.6
read	$\frac{1}{4}$	2	2.2	3	75		2.3	
,, 1-3 stereo								
write	$\frac{1}{4}$	2	2.75	6	7			
read	$\frac{1}{4}$	2	2.75	3	40(75)			
, , four track								
write	$\frac{1}{4}$	4	0.5	6	7			
read	1	4	0.5	3	75			
,, eight track								
write	$\frac{1}{2}$	8	0.5	6	7			
read	$\frac{1}{2}$	8	0.5	3	75			
,, seventeen track								
write	1	17	0.5	6	7			
read	1	17	0.5	3	75			
Analog Instr.								
write	$\frac{1}{2}$	4	1.27	3	0.1	80		20^{1}
read	$\frac{1}{2}$	4	1.27	1.5	2		8	
write	1	$7(+1)$	1.27/0.5	3	0.1	80		20^{2}
read	1	$7(+1)$	1.27/0.5	1.5	2		8	
Video								
write/read	1	1	0.15 or 0.27	1.5	0.012		10	50
Flying								
", write/read	drum	8	0.7	20	0.13		200	100^{3}
,, write/read	dise	9	0.5	6	0.084		27	115
, write/read	disc	12	0.35	6	0.015		15	150

[^10]

Fixed capacitors

Electrolytic capacitors - selection guide C3
Polyester capacitors
Flat foil type, metallised C 60
Moulded type, metallised C62
Tubular foil type C64
Paper capacitors for direct current
Insulated tubular type C70
Tubular type in aluminium casing C72
Tubular type in ceramic casing for high voltages C74
Box type for telephony C76
Rectangular box type C77
High-voltage types for smoothing purposes C80
High-voltage types in insulated casing C83
Types for interference suppression in motor cars C85
Paper capacitors for alternating current
Types for interference suppression in electrical appliances C86
Box type C87
Special types C94
Types for power-factor correction C95
Mica capacitors
Moulded midget type C97
Moulded precision type C99
Balancing telephone cable type C102
Polystyrene capacitors
Balancing telephone cable type C105
Tubular moulded type C107
Ceramic capacitors - selection guide C112
RC combinations C138

ELECTROLYTIC CAPACITORS

INTRODUCTION

The electrolytic capacitors listed can be subdivided into the following groups according to their principal applications.

1. wet aluminium capacitors

1a. the general-purpose programme
C426 series - miniature type
C437 series - small type
C431 series - large type
1b. the extended-voltage programme
C436 series - small type
C433 series - large type
AC series - large type

2. wet long-life capacitors

C428 series - small aluminium type
C432 series - large aluminium type
C420 series - ultra small tantalum type

3. solid aluminium and tantalum capacitors

C415 series - solid aluminium type
C421 series - solid tantalum type
Group 1a: the general-purpose programme
This programme includes a large group of capacitors for low working voltages in an extended capacitance range. In connection with the low working voltages and high capacitance values these types will fulfil all requirements of transistorised equipment. The permissible ambient temperature range is -40 to $+70^{\circ} \mathrm{C}$, which is suitable for these applications.

The economy range of the C426 series consists of types with the same capacitance and voltage range as the standard C426 series but in can sizes 4 and 6 only. Compared to smaller types they have better characteristics, which make this range preferable for those cases where utmost miniaturisation is not required.

Group 1b: the extended voltage programme
These types can be used if high working voltages are required and also at higher working temperatures up to $85^{\circ} \mathrm{C}$ (C436, C433 series). Moreover in this range different mechanical versions are available.

Group 2: wet long-life capacitors

These types have a special construction resulting in better properties such as long service life and high reliability for application in computers, telephone and other industrial equipment, where these properties are of primary interest.
The C428 series have a limited capacitance range and are therefore specially suitable for coupling and decoupling applications.
The C432 series have very high capacitance values and are therefore specially suitable for use in power supplies of professional equipment. The admissible ambient temperature range is -40 to $+70^{\circ} \mathrm{C}$.
A special group of capacitors which, regarding their properties, can also be arranged in group 2, are the miniature wet tantalum types: the C420 series. These types combine excellent properties, long service life and reliability with ultra small dimensions. Typical applications are hearing aids and other very small transistorized equipment. The admissible ambient temperature range is -40 to $+55^{\circ} \mathrm{C}$.

ELECTROLYTIC CAPACITORS

INTRODUCTION
Group 3: solid aluminium and tantalum capacitors
The C415 series are of cheap design and have good properties, the most important being unlimited service life, high reliability, high stability; they are tested according to MIL-STD202. The permissible ambient temperature ranges from -80 to $+85^{\circ} \mathrm{C}$ at full voltage.
The C421 series have about the same properties with very small dimensions. They are therefore very suitable for miniaturised professional and military equipment. The permissible ambient temperature range is -40 to $+85^{\circ} \mathrm{C}\left(125^{\circ} \mathrm{C}\right.$ with derated voltage). C421 capacitors are conform MIL-C26655B, styles CS12/CS13.

SELECTION GUIDE

application	capacitance range (μF)	voltage range (V)	maximum operating temperature $\left({ }^{\circ} \mathrm{C}\right)$	type	type number	page
For general purposes (economy range)	0.32 up to 400	4 up to 64	70/85	miniature ${ }^{2}$	C 426	C 4
For general	0.64 up to 500	2.5 up to 64	70^{1}	miniature ${ }^{2}$	C 426	C 8
purposes	64 up to 4000	2.5 up to 64	70	small ${ }^{\text {a }}$	C 437	C 12
	320 up to 25000	4 up to 64	70	large ${ }^{2}$	C 431	C 16
If a high operating	40 up to 2000	2.5 up to 64	85	small ${ }^{2}$	C 436	C 22
temperature is required	200 up to 10000	4 up to 64	85	large ${ }^{2}$	C 433	C 26
For high voltages	2.5 up to 80	100 up to 400	70	small ${ }^{2}$	C 436	C 22
	8 upto 500	100 up to 500	70	large ${ }^{2}$	C 433	C 26
	12.5 up to 250	64 up to 500	70	screw-base ${ }^{2}$	C 441	C 34
	8 upto 500	100 up to 500	70	large ${ }^{2}$	special series	C 36
For long service	2.5 up to 320	4 up to 64	70	small ${ }^{2}$	C 428	C 38
life and high reliability	900 up to 31500	6.4 up to 100	70	large ${ }^{2}$	C 432	C 42
For severest requirements,	2 up to 100	4 up to 40	85	solid aluminimum	C 415	C 46
long service life and high reliability	0.33 up to 330	6 up to 35	125	solid tantalum	C 421	C 52
For ultra small dimensions	0.64 up to 40	2.5 up to 25	55	wet tantalum	C 420	C 56

[^11]
C426 series - ELECTROLYTIC CAPACITORS

MINIATURE TYPE, FOR GENERAL PURPOSES (ECONOMY RANGE)

The economy range covers the whole capacitance and voltage range of the standard C426 series, but in can sizes 4 and 6 only, which offers the cheapest possible solution. Moreover, these capacitors offer, compared to smaller types:
(a) better low-temperature characteristics;
(b) lower losses and impedances;
(c) longer service life and higher reliability.
They are therefore preferable in all cases where utmost miniaturisation is not required.
These capacitors are designed for operation between -40 and $+70^{\circ} \mathrm{C}$. They may also operate at $85^{\circ} \mathrm{C}$ for 12 hours per 24 hours.

VOLT		$\begin{gathered} c \\ 6.4 \end{gathered}$	$\begin{aligned} & 0 \\ & 10 \end{aligned}$	$\begin{array}{cc} E & F \\ 16 & 25 \end{array}$	6 40	H 64
$\begin{aligned} & 0.32 \\ & 0.40 \end{aligned}$						
0.640.8						
1						
1.25						
2						
2.53.2				(4)		
4						
5						
64						
6.4						
10						
				-		
12.5 16				(4)		
20						
25						
				\bigcirc		
40						
50						
64				-		
100125						
160						
200						
320400						
				C	AN SI	
500				4		$\times 18$
				-		$\times 18$

ELECTROLYTIC CAPACITORS - C426 series

MINIATURE TYPE, FOR GENERAL PURPOSES (ECONOMY RANGE)

Fig. 2

Dimensions (mm)

can size	insulated version with axial leads			printed-wiring version				
	fig.	D_{1}	L_{1}		fig.	D_{2}	L_{2}	5
4	1	6.7	18.5	2	8.7	25	7.62	
6	1	10.4	18.5	2	12.9	25	10.16	

Example: The type number of a $25 \mu \mathrm{~F} / 25 \mathrm{~V}$ capacitor, p.w. version, is C426CB/F25

C426 series - ELECTROLYTIC CAPACITORS

MINIATURE TYPE, FOR GENERAL PURPOSES (ECONOMY RANGE)

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($/ 1 \mathrm{~A}$)	$\begin{aligned} & \text { ripple } \\ & \text { current }{ }^{2} \\ & (m A) \end{aligned}$	dissipation factor $(\tan \delta)$	impedance ${ }^{3}$ (S)	type number suffix
4	4	8	4.1	16	0.15	5	B8
4	4	125	30	40	0.30	6	B125
6	4	400	73	125	0.30	1.8	B400
4	6.4	32	15	16	0.15	6	C32
4	6.4	100	37	40	0.30	6	C100
6	6.4	320	85	125	0.30	1.8	C320
4	10	64	37	40	0.25	6	D64
6	10	200	85	125	0.25	1.8	D200
4	16	2.5	4.1	16	0.10	5	E2.5
4	16	16	18	16	0.20	6	E16
4	16	40	37	40	0.20	6	E40
6	16	125	85	125	0.20	1.8	E125
4	25	1.6	4.1	16	0.10	6	F1.6
4	25	10	18	16	0.15	6	F10
4	25	25	37	40	0.15	6	F25
6	25	80	85	125	0.15	1.8	F80
4	40	1	4.1	16	0.10	10	G1
4	40	6.4	18	16	0.10	6	G6.4
4	40	16	37	40	0.10	6	G16
6	40	50	85	125	0.10	1.8	G50
4	64	0.32	2	16	0.10	18	H0.32
4	64	0.64	4.1	16	0.10	12	H0.64
4	64	4	18	16	0.10	6	H4
4	64	10	37	40	0.15	6	H10
6	64	32	85	125	0.15	1.8	H32

Maximum leakage current at $20^{\circ} \mathrm{C}$ afcer 5 minutes
${ }^{2}$ Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
${ }^{3}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

ELECTROLYTIC CAPACITORS - C426 series

MINIATURE TYPE, FOR GENERAL PURPOSES (ECONOMY RANGE)

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 4

Can size 4

Can size 4

Can size 6

C426 series - ELECTROLYTIC CAPACITORS

MINIATURE TYPE, FOR GENERAL PURPOSES

These capacitors are specially suitable for coupling and decoupling in miniaturised electronic equipment, such as transistorised pocket radio receivers, personal tape recorders and similar applications.
They are available in an insulated version with axial leads for conventional wiring and in a version for vertical mounting on printed wiring boards. The two smallest cans are also available in a non-insulated version with axial leads.

For applications in which utmost miniaturisation is not required we refer to the economy range (see preceeding pages).

- non-preferred type

Maximum d.c. working voltage

ELECTROLYTIC CAPACITORS - C426 series

MINIATURE TYPE, FOR GENERAL PURPOSES

Fig. 1a
Fig 2b

Fig. 2a

* 37 mm for can size 6

Dimensions (mm)

insulated version with axial leads					printed-wiring version			
$\begin{gathered} \text { can } \\ \text { size } \end{gathered}$	d	fig.	D_{1}	L_{1}	fig.	D_{z}	L_{2}	5
1	0.5	1a	3.4	10.5	1 b	3.8	10.8	2.54
2	0.6	2a	4.8	10.5	16	5.2	10.8	2.54
3	0.6	2a	6.1	10.5	16	6.4	10.8	3.59
4	0.8	2a	6.7	18.5	2 b	8.7	25	7.62
5	0.8	2a	8.3	18.5	2 b	10.3	25	7.62
6	0.8	2a	10.4	18.5	2b	12.9	25	10.16

tolerance on capacitance: can size 2-6.
can size 1
$-10 /+50 \%$
$-10 /+100 \%$
temperature range: can size 2-6
$-40 /+70^{\circ} \mathrm{C}$
can size 1
$-40 /+60^{\circ} \mathrm{C}$
a.c. voltage, without d.c. voltage
$2.5 \vee$ types: $0.25 \mathrm{~V}_{\mathrm{rms}}$
4 V types: $0.4 \mathrm{~V}_{\mathrm{rms}}$
6.4 V types: $0.6 \mathrm{~V}_{\mathrm{rms}}$ 10-64 V types: $1 \mathrm{~V}_{\mathrm{rms}}$
peak voltage during 1 minute per hour: at $\quad+70^{\circ} \mathrm{C}$. . . $1.125 \times$ working voltage +0.5 V at $\leq+40^{\circ} \mathrm{C}$. . . . $1.25 \times$ working voltage +0.5 V
climatic group number

40/70/56 (IEC)

Composition of the type number

Example: The rype number of a $10 \mu \mathrm{~F} / 16 \mathrm{~V}$ capacitor, insulated, is C426AR/E10

MINIATURE TYPE, FOR GENERAL PURPOSES

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($/ 1 \mathrm{~A}$)	ripple current ${ }^{2}$ (mA)	dissipation factor $(\tan \delta)$	impedance ${ }^{3}$ (Ω)	type number suffix
1	2.5	10	3.1	2.5	0.35	100	A10
2	2.5	40	8	10	0.35	24	A40
3	2.5	80	14	20	0.35	12	A80
4	2.5	160	25	40	0.35	6	A160
5	2.5	320	45	80	0.35	3	A320
6	2.5	500	63	125	0.35	1.8	A500
1	4	8	3.5	2.5	0.3	100	B8
2	4	32	10	10	0.3	24	B32
3	4	64	18	20	0.3	12	B64
4	4	125	30	40	0.3	6	B125
5	4	250	55	80	0.3	3	B250
6	4	400	73	125	0.3	1.8	B400
1	6.4	6.4	4.1	2.5	0.3	100	C6.4
2	6.4	25	12	10	0.3	24	C25
3	6.4	50	21	20	0.3	12	C50
4	6.4	100	37	40	0.3	6	C100
5	6.4	200	63	80	0.3	3	C200
6	6.4	320	85	125	0.3	1.8	C320
1	10	4	4.1	2.5	0.25	100	D4
2	10	16	12	10	0.25	24	D16
3	10	32	21	20	0.25	12	D32
4	10	64	37	40	0.25	6	D64
5	10	125	63	80	0.25	3	D125
6	10	200	85	125	0.25	1.8	D 200
1	16	2.5	4.1	2.5	0.2	100	E2.5
2	16	10	12	10	0.2	24	E10
3	16	20	21	20	0.2	12	E20
4	16	40	37	40	0.2	6	E40
5	16	80	63	80	0.2	3	E80
6	16	125	85	125	0.2	1.8	E125
1	25	1.6	4.1	2.5	0.15	100	F1. 6
2	25	6.4	12	10	0.15	24	F6. 4
3	25	12.5	21	20	0.15	12	F12.5
4	25	25	37	40	0.15	6	F25
5	25	50	63	80	0.15	3	F50
6	25	80	85	125	0.15	1.8	F80
1	40	1	4.1	2.5	0.10	100	G1
2	40	4	12	10	0.10	24	G4
3	40	8	21	20	0.10	12	G8
4	40	16	37	40	0.10	6	G16
5	40	32	63	80	0.10	3	G32
6	40	50	85	125	0.10	1.8	G50
1	64	0.64	4.1	2.5	0.15	100	
2	64	2.5	12	10	0.10	24	H2.5
3	64	5	21	20	0.10	12	H5
4	64	10	37	40	0.10	6	H10
5	64	20	63	80	0.10	3	H20
6	64	32	85	125	0.10	1.8	H32

Types of which the type number suffix is printed in bold letters are preferred.

[^12]
ELECTROLYTIC CAPACITORS - C426 series

MINIATURE TYPE, FOR GENERAL PURPOSES

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 1

Can size 2

Can size 3

C437 series - ELECTROLYTIC CAPACITORS

SMALL TYPE, FOR GENERAL PURPOSES

These capacitors are specially suitable for coupling and decoupling in small transistorised equipment, such as portable radio receivers and personal recorders, and similar applications where high capacitance values are needed.
This new range of electrolytic capacitors, to be considered as an extension of the miniature C426 series, is characterised by interesting features: small size, high capacitance values and a long service life.
The sturdy mechanical construction - with welded terminals - ensures long and reliable operation. Low leakage currents could be achieved by employing highly purified material and by a carefully controlled manufacturing process.

Maximum d.c. working voltage

ELECTROLYTIC CAPACITORS - C437 series

SMALL TYPE, FOR GENERAL PURPOSES

Dimensions (mm)

can size	insulated version		printed-wiring version		
	D_{1}	L_{1}	D_{2}	L_{2}	S
00	10.4	30.5	12.8	39.3	10.16
01	12.9	30.5	15.2	39.3	10.16
02	15.4	30.5	17.8	39.3	12.70
03	18.5	30.5	20.8	39.3	15.24

Composition of the type number C437../. .

Example: The number of a $1000 \mu \mathrm{~F} / 6.4 \mathrm{~V}$ capacitor, insulated, is C437AR/C1000.

C437 series - ELECTROLYTIC CAPACITORS

SMALL TYPE, FOR GENERAL PURPOSES

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($\mu \mathrm{A}$)	ripple current ${ }^{2}$ (mA)	dissipation factor (tan δ)	impedance (Ω)	type number suffix
00	2.5	1000	100	200	0.35	1.0	A1000
01	2.5	1600	145	300	0.35	0.8	A1600
02	2.5	2500	215	400	0.35	0.8	A2500
03	2.5	4000	325	550	0.35	0.8	A4000
00	4	800	120	200	0.30	1.0	B 800
01	4	1250	175	250	0.30	0.8	B1 250
02	4	2000	265	350	0.30	0.8	B2000
03	4	3200	400	500	0.30	0.8	B3200
00	6.4	640	145	200	0.25	1.0	C640
01	6.4	1000	215	250	0.25	0.8	C1000
02	6.4	1600	325	350	0.25	0.8	C1600
03	6.4	2500	500	500	0.25	0.8	C2500
00	10	400	145	200	0.20	1.0	D400
01	10	640	215	250	0.20	0.8	D640
02	10	1000	325	350	0.20	0.8	D1000
03	10	1600	500	500	0.20	0.8	D1600
00	16	250	145	150	0.15	1.0	E250
01	16	400	215	250	0.15	0.8	E400
02	16	640	325	300	0.15	0.8	E640
03	46	1000	500	450	0.15	0.8	E1000
00	25	160	145	125	0.15	1.0	F160
01	25	250	215	200	0.15	0.8	F250
02	25	400	325	250	0.15	0.8	F400
03	25	640	500	350	0.15	0.8	F640
00	40	100	145	125	0.1	1.2	G100
01	40	160	215	200	0.1	1.2	G160
02	40	250	325	250	0.1	0.8	G 250
03	40	400	500	350	0.1	0.8	G400
00	64	64	145	100	0.1	1.0	H64
01	64	100	215	150	0.1	1.2	H100
02	64	160	325	200	0.1	1.2	H160
03	64	250	500	250	0.1	0.8	H250

Types of which the type number suffix is printed in bold letters are preferred.

[^13]
ELECTROLYTIC CAPACITORS - C437 series

SMALL TYPE, FOR GENERAL PURPOSES

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 02

Can size 01

Can size 03

C431 series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR GENERAL PURPOSES

Maximum dec. working voltage
This range of high-capacitance electrolytic capacitors has been developed for coupling and decoupling applications in mains-operted transistorised equipment, and their design makes them particularly suitable for television receivers. In applications of this type high alternating currents are often involved; therefore, special attention has been given to the current rating of these capacitors.
A special construction guarantees a very low equivalent series resistance which makes them suitable for high ripple currents.
The capacitors are insulated, whereas a noninsulated version is available upon request. The five can sizes cover a range of capacitlance of from 320 to $25000 \mu \mathrm{~F}$ with working voltages between 4 and $64 \mathrm{~V}_{\text {de }}$.
Double versions are available in can size 7 , triple versions in can sizes 9 and 10.
The construction is such that one section may be loaded with a very high ripple current, whereas the ripple voltages of the other sections, due to parasitic capacitances, remain very low.

LARGE TYPE, FOR GENERAL PURPOSES

Single version
Can sizes 5, 6, 7, 9, 10

Double version Can size 7

Triple version Can sizes 9 and 10

Dimensions insulated version (mm)

can size	5	6	7	9	10
D	22	26	26	36	41
L	51	50	81	81	81

The insulared version is preferred. The dimensions given should be decreased by 1.0 mm for the non-insulated version.

climatic group number
40/70/56 (IEC)

Composition of the type number
insulated: BR
C431

Example: The type number of a $10000 \mu \mathrm{~F} / 16 \mathrm{~V}$ capacitor, insulated, is C431 BR/E 10000.

C431 series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR GENERAL PURPOSES

Fig. 1

Fig. 2

Mounting brackets

To facilitate vertical mounting, a series of rigid brackets made of cadmium-plated steel are available. They can easily be slid over the capacitor and then fixed to it with a bolt and nut. They are provided with two mounting lugs and, except the smallest version, with two supports to give stability in the cross direction.
Four types are available, one for each can diameter of the capacitor range. They are delivered without bolts and nuts.

can size	dimensions (mm)					figure
	a	b	c	d		
5	37.0 ± 0.2	21	-	15.5	1	B1 271 21
6,7	41.5 ± 0.2	25	35	18.5	2	B1 271 22
9	51.5 ± 0.2	35	45	23.5	2	B1 271 24
10	56.5 ± 0.2	40	50	26	2	B1 271 25

version	can size	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ (mA)	ripplecurrent ${ }^{2}$ (mA)	dissipation factor (tan δ)	$\begin{gathered} \text { impedance }{ }^{3} \\ (\Omega) \end{gathered}$	type number suffix
single	$\begin{array}{r} 6 \\ 7 \\ 9 \\ 10 \end{array}$	4 4 4 4		$\begin{aligned} & 0.6 \\ & 1.0 \\ & 2.6 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1300 \\ & 2100 \\ & 2500 \end{aligned}$	0.50 0.50 0.50 0.50	$\begin{aligned} & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	$B 5000$ $B 8000$ B16000 B25000
single	$\begin{array}{r} 6 \\ 7 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 6.4 \\ & 6.4 \\ & 6.4 \\ & 6.4 \end{aligned}$	$\begin{array}{r} 4000 \\ 6400 \\ 12500 \\ 20000 \end{array}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & 2.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1300 \\ & 2100 \\ & 2500 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	C4000 C 6400 C12500 C20000
single	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 2000 \\ 3200 \\ 5000 \\ 10000 \\ 16000 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.0 \\ & 1.5 \\ & 3.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 850 \\ 1000 \\ 1300 \\ 2100 \\ 2500 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	D2000 D3200 D 5000 D10000 D1 6000
single	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 16 \\ & 16 \\ & 16 \\ & 16 \\ & 16 \end{aligned}$	$\begin{array}{r} 1250 \\ 2000 \\ 3200 \\ 6400 \\ 10000 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.0 \\ & 1.5 \\ & 3.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 700 \\ 1000 \\ 1200 \\ 1800 \\ 2200 \end{array}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	E1250 E2000 E3200 E6400 E10000
single	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{r} 800 \\ 1250 \\ 2000 \\ 4000 \\ 6400 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.0 \\ & 1.5 \\ & 3.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 650 \\ 800 \\ 1100 \\ 1700 \\ 2000 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \\ & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & \text { F800 } \\ & \text { F1250 } \\ & \text { F2000 } \\ & \text { F4000 } \\ & \text { F6400 } \end{aligned}$
single	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 40 \\ & 40 \\ & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 500 \\ 800 \\ 1250 \\ 2500 \\ 4000 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.0 \\ & 1.5 \\ & 3.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 650 \\ 850 \\ 1100 \\ 1700 \\ 2000 \end{array}$	$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.15 \\ & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & \text { G500 } \\ & \text { G800 } \\ & \text { G1250 } \\ & \text { G2500 } \\ & \text { G4000 } \end{aligned}$
single	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 9 \\ 90 \end{array}$	$\begin{aligned} & 64 \\ & 64 \\ & 64 \\ & 64 \\ & 64 \end{aligned}$	$\begin{array}{r} 320 \\ 500 \\ 800 \\ 1600 \\ 2500 \end{array}$	$\begin{aligned} & 0.6 \\ & 1.0 \\ & 1.5 \\ & 3.0 \\ & 4.8 \end{aligned}$	$\begin{array}{r} 500 \\ 800 \\ 1100 \\ 1700 \\ 2000 \end{array}$	$\begin{aligned} & 0.10 \\ & 0.10 \\ & 0.10 \\ & 0.10 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.25 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & \text { H320 } \\ & \text { H500 } \\ & \text { H800 } \\ & \text { H1600 } \\ & \text { H2500 } \end{aligned}$
double	$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$	$\begin{aligned} & 4 \\ & 6.4 \\ & 10 \\ & 16 \\ & 25 \\ & 40 \\ & 64 \end{aligned}$	$\begin{aligned} & 2 \times 4000 \\ & 2 \times 3200 \\ & 2 \times 2500 \\ & 2 \times 1600 \\ & 2 \times 1000 \\ & 2 \times 640 \\ & 2 \times 400 \end{aligned}$	$\begin{aligned} & 2 \times 0.5 \\ & 2 \times 0.6 \\ & 2 \times 0.75 \end{aligned}$	$\begin{aligned} & 2 \times 650 \\ & 2 \times 650 \\ & 2 \times 650 \\ & 2 \times 600 \\ & 2 \times 550 \\ & 2 \times 550 \\ & 2 \times 550 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.45 \\ & 0.40 \\ & 0.35 \\ & 0.20 \\ & 0.15 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2 \times 0.40 \\ & 2 \times 0.40 \end{aligned}$	$\begin{aligned} & \text { B4000 }+4000 \\ & \text { C } 3200+3200 \\ & \text { D } 2500+2500 \\ & \text { E1600 }+1600 \\ & \text { F1000 }+1000 \\ & \text { G640 }+640 \\ & \text { H400 }+400 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 3 \times 5000 \\ & 3 \times 8000 \end{aligned}$	$\begin{aligned} & 3 \times 0.6 \\ & 3 \times 1.0 \end{aligned}$	$\begin{aligned} & 3 \times 700 \\ & 3 \times 800 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & \text { B5000 }+5000+5000 \\ & \text { B8000 }+8000+8000 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 3 \times 4000 \\ & 3 \times 6400 \end{aligned}$	$\begin{aligned} & 3 \times 0.8 \\ & 3 \times 1.2 \end{aligned}$	$\begin{aligned} & 3 \times 700 \\ & 3 \times 800 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & \mathrm{C} 4000+4000+4000 \\ & \mathrm{C} 6400+6400+6400 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 3 \times 3200 \\ 3 \times 5000 \end{array}$	$\begin{aligned} & 3 \times 1.0 \\ & 3 \times 1.5 \end{aligned}$	$\begin{aligned} & 3 \times 700 \\ & 3 \times 800 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & \text { D } 3200+3200+3200 \\ & \text { D } 5000+5000+5000 \end{aligned}$
criple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 3 \times 2000 \\ & 3 \times 3200 \end{aligned}$	$\begin{aligned} & 3 \times 1.0 \\ & 3 \times 1.5 \end{aligned}$	$\begin{aligned} & 3 \times 600 \\ & 3 \times 700 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & E 2000+2000+2000 \\ & E 3200+3200+3200 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 3 \times 1250 \\ & 3 \times 2000 \end{aligned}$	$\begin{array}{r} 3 \times 1.0 \\ 3 \times 1.5 \end{array}$	$\begin{array}{r} 3 \times 550 \\ 3 \times 650 \end{array}$	$\begin{aligned} & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & \text { F1250 + 1250 + } 1250 \\ & \mathrm{~F} 2000+2000+2000 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \end{array}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{array}{r} 3 \times 800 \\ 3 \times 1250 \end{array}$	$\begin{array}{r} 3 \times 1.0 \\ 3 \times 1.5 \end{array}$	$\begin{aligned} & 3 \times 550 \\ & 3 \times 650 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \end{aligned}$	$\begin{aligned} & \mathrm{G} 800+800+800 \\ & \mathrm{G} 1250+1250+1250 \end{aligned}$
triple	$\begin{array}{r} 9 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 64 \\ & 64 \\ & \hline \end{aligned}$	$\begin{array}{r} 3 \times 500 \\ 3 \times 800 \\ \hline \end{array}$	$\begin{array}{r} 3 \times 1.0 \\ 3 \times 1.5 \\ \hline \end{array}$	$\begin{array}{r} 3 \times 550 \\ 3 \times 650 \\ \hline \end{array}$	$\begin{array}{r} 0.10 \\ 0.10 \\ \hline \end{array}$	$\begin{aligned} & 3 \times 0.25 \\ & 3 \times 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & H 500+500+500 \\ & H 800+800+800 \end{aligned}$

[^14]
C431 series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR GENERAL PURPOSES

Series resistance of a 16-64 V single capacitor as a function of frequency.

Series resistance of a $16-64 \mathrm{~V}$ double capacitor as a function of frequency

Series resistance of a 16-64 V triple capacitor as a function of frequency

Dissipation factor of a single capacitor as a function of temperature

Dissipation factor of a double capacitor as a function of temperature

ELECTROLYTIC CAPACITORS - C431 series

LARGE TYPE, FOR GENERAL PURPOSES

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 5

Can size 6

Can size 7

Can size 9

Can size 10

SMALL TYPE, FOR HIGH AND LOW VOLTAGES

Due to the high working voltages and permissible temperature these small size capacitors are suitable for decoupling in all kind of tube equipment such as radio and television receivers and similar applications. They have been designed for operation between -40 and $+70^{\circ} \mathrm{C}$.
However, the capacitors with d.c. working voltages up to and including 100 V may also operate at $+85^{\circ} \mathrm{C}$ for 12 hours per 24 hours provided that the applied d.c. voltage is not higher than 64% of the nominal working voltage.

- non-preferred type

Max. d.c. working voltage

Dimensions (mm)

can size	insulated version		printed-wiring version		
	D_{1}	L_{1}	D_{2}	L_{2}	S
0	10.4	18.5	12.8	26	10.16
00	10.4	30.5	12.8	39.3	10.16
01	12.9	30.5	15.2	39.3	10.16
02	15.4	30.5	17.8	39.3	12.70
03	18.5	30.5	20.8	39.3	15.24

Composition of the type number \quad C436... .

Example: The type number of a $12.5 \mu \mathrm{~F} / 150 \mathrm{~V}$ capacitor, insulated, is C436AR/K12.5

C436 series - ELECTROLYTIC CAPACITORS

SMALL TYPE, FOR HIGH AND LOW VOLTAGES

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($\mu \mathrm{A}$)	$\begin{aligned} & \text { ripple } \\ & \text { current² } \\ & (m A) \end{aligned}$	dissipation factor (tan δ)	impedance ${ }^{3}$ (Ω)	type number suffix
00	2.5	500	65	200	0.35	2.0	A500
01	2.5	800	85	300	0.35	1.6	A800
02	2.5	1250	120	400	0.35	1.2	A1 250
03	2.5	2000	180	550	0.35	1.0	A2000
00	4	400	75	200	0.3	2.0	B400
01	4	640	100	250	0.3	1.6	B640
02	4	1000	145	350	0.3	1.2	B1000
03	4	1600	215	500	0.3	1.0	B1600
00	6.4	320	85	200	0.25	2.0	C320
01	6.4	500	120	250	0.25	1.6	C500
02	6.4	800	180	350	0.25	1.2	C800
03	6.4	1250	265	500	0.25	1.0	C1250
00	10	250	100	200	0.20	2.0	D250
01	10	400	145	250	0.20	1.6	D400
02	10	640	215	350	0.20	1.2	D640
03	10	1000	325	500	0.20	1.0	D1000
00	16	160	100	150	0.15	2.0	E160
01	16	250	145	250	0.15	1.6	E250
02	16	400	215	300	0.15	1.2	E400
03	16	640	325	450	0.15	1.0	E640
00	25	100	100	125	0.15	2.0	F100
01	25	160	145	200	0.15	1.6	F160
02	25	250	215	250	0.15	1.2	F250
03	25	400	325	350	0.15	1.0	F400
00	40	64	100	125	0.1	2.0	G64
01	40	100	145	200	0.1	1.6	G100
02	40	160	215	250	0.1	1.2	G160
03	40	250	325	350	0.1	1.0	G250
00	64	40	100	100	0.1	2.0	$\mathrm{H} 40$
01	64	64	145	150	0.1	1.6	$\mathrm{H} 64$
02	64	100	215	200	0.1	1.2	H100
03	64	160	325	250	0.1	1.0	$\mathrm{H} 160$
00	100	20	85	50	0.15	6.4	120
01	100	32	130	75	0.15	4.0	」32
02	100	50	180	100	0.15	2.5	150
03	100	80	270	125	0.15	1.6	」180
0	150	6.4	55	25	0.15	15.0	K6.4
00	150	12.5	85	50	0.15	8.0	K12.5
01	150	20	130	75	0.15	5.0	$\mathrm{K} 20$
02	150	32	180	100	0.15	3.0	K32
03	150	50	270	125	0.15	2.0	$\text { K } 50$
00	200	10	85	25	0.15	8.0	L10
01	200	16	130	50	0.15	5.0	$\text { L1 } 6$
02	200	25	180	75	0.15	3.0	L25
03	200	40	270	100	0.15	2.0	L40
0 00	250 250	4	55 85	25	0.15	20.0	$M 4$
00	250	8 125	85	25	0.15	10.0	M8
01	250 250	12.5	130	50 75	0.15	6.4	M12.5
02 03	250 250	20 32	180	$\begin{array}{r}75 \\ \hline 100\end{array}$	0.15	4.0	M20
03	250 300	32	270	100	0.15	2.5 20.0	M32
00	300 300	$10^{6.4}$	85 130	25	0.15	20.0	N6.4
02	300	10	130 180	50 75	0.15 0.15	15.0 80	N10 N16
03	300	25	270	100	0.15 0.15	8.0 5.0	N16
0	350	2.5	55	25	0.15	60.0	P2.5
00	350	5	85	25	0.15	30.0	P5
01	350	8	110	25	0.15	20.0	P8
02	350	12.5	160	50	0.15	15.0	P12.5
03	350	20	240	75	0.15	8.0	P20
00	400	4	85	25	0.15	45.0	Q4
01	400	6.4	110	25	0.15	30.0	Q6.4
02	400	10	160	50	0.15	20.0	Q10
03	400	16	240	75	0.15		

[^15]
ELECTROLYTIC CAPACITORS - C436 series

SMALL TYPE, FOR HIGH AND LOW VOLTAGES

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table

Can size 02

Can size 03

C433 series - ELECTROLYTIC' CAPACITORS

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

Due to the high working voltages and high permissible temperature these capacitors are suitable for use in power supplies of tube equipment.
There are ten can sizes and three mechanical versions.
(a) Capacitors with soldering terminals acting as positive and negative terminals either suspended in the wiring of the equipment or fixed by means of a bracket.
(b) Capacitors in a can the edge of which is provided with three or four twistable terminals for fixing the capacitor and acting as negative terminals. One or two soldering tags on the seal serve as positive terminals.
(c) Printed-wiring capacitors. The can is equipped with a built-in metallic base which contains three or four soldering terminals for the attachment and acting as negative terminals. One or two pins through the seal serve as positive terminals.

These capacitors are not insulated. Insulated versions are available upon request.

Capacitors in can size 6 are also available in can size 6T

- non-preferred type

Maximum d.c. working voltage

ELECTROLYTIC CAPACITORS - C433 series

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

construction	can size	type indication	
		4-64 V	$100-500 \mathrm{~V}$
soldering terminals	3	-	BB
	4	BF	BB
	5	EF	BB
	6	EF	BB
twistable terminals	$6 T$	DF	DB
	7	DF	DB
	8	EF	EB
	9	EF	EB
printed-wiring terminals	4	MF	MB
	5	MF	MB
	6 T	MF	MB
	A8	NF	NB
	9A	NF	NB

Composition of the type number

Example: The type number of a $50 \mu \mathrm{~F} / 350 \mathrm{~V}$ capacitor, p.w. version, non insulated, is C433MB/P50.

C433 series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

Capacitors with soldering terminals

Sizes 3, 4, 5, 6

Capacitors with twistable terminals

Sizes 6T, 7

Sizes 8, 9

Capacitors with printed-wiring terminals

Sizes 4, 5

Size $6 T$

Dimensions (mm)

can size	D	H
3	18	33
4	18	49
5	21	49
6	25	49
$6 T$	25	51
7	25	80
8	30	80
8 A	30	51
9	35	80
9 A	35	51

Sizes 8A, 9A

ELECTROLYTIC CAPACITORS - C433 series

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

Hole patterns for types with printed-wiring terminals

Can size 4, single type, 3 p.w. terminals.

Can size 4, double type, 3 p.w. terminals.

Can size 5, single type, 3 p.w. terminals.

Can size 5, double type, 3 p.w. terminals.

Can size 6T, single type, 3 p.w. terminals.

Can size 8 A , single type, 4 p.w. terminals.

Can size 9A, single type, 4 p.w. terminals.

Can size 6T, double type, 3 p.w. terminals.

Can size 8A, double type, 4 p.w. terminals.

Can size 9A, double type, 4 p.w. terminals.

LARGE TYPE, FOR HIGH AND LOW VOLTAGES
High voltage types, single version

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance (μF)	leakage current ${ }^{1}$ (mA)	$\begin{aligned} & \text { ripple } \\ & \text { current }{ }^{2} \\ & (m A) \end{aligned}$	$\text { impedance }^{3}$ (Ω)	type number suffix
$\begin{gathered} 4 \\ 6 \\ 6 T \\ 7-8 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \\ & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.78 \\ & 0.78 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 250 \\ & 450 \\ & 450 \\ & 650 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.63 \\ & 0.63 \\ & 0.63 \end{aligned}$	$\begin{aligned} & \mathrm{J} 100 \\ & \mathrm{~J} 250 \\ & \mathrm{~J} 250 \\ & \mathrm{~J} 500 \end{aligned}$
$\begin{gathered} 4 \\ 5 \\ 7-8 \mathrm{~A} \\ 8 \end{gathered}$	$\begin{aligned} & 150 \\ & 150 \\ & 150 \\ & 150 \end{aligned}$	$\begin{array}{r} 64 \\ 100 \\ 250 \\ 500 \end{array}$	$\begin{aligned} & 0.33 \\ & 0.5 \\ & 1.15 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 200 \\ & 250 \\ & 450 \\ & 650 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & 0.63 \\ & 0.63 \end{aligned}$	$\begin{aligned} & \text { K64 } \\ & \text { K100 } \\ & \text { K250 } \\ & \text { K } 500 \end{aligned}$
$\begin{aligned} & 4 \\ & 6 \\ & 6 T \\ & 9 A \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 50 \\ 100 \\ 100 \\ 250 \end{array}$	$\begin{aligned} & 0.33 \\ & 0.63 \\ & 0.63 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 300 \\ & 300 \\ & 450 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.75 \\ & 0.75 \\ & 0.63 \end{aligned}$	$\begin{aligned} & \text { L50 } \\ & \text { L100 } \\ & \text { L100 } \\ & \text { L250 } \end{aligned}$
$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 6 T \\ & 8 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 50 \\ 64 \\ 100 \\ 100 \\ 250 \end{array}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.78 \\ & 0.78 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 150 \\ & 200 \\ & 250 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.25 \\ & 0.75 \\ & 0.75 \\ & 0.63 \end{aligned}$	M50 M64 M1 00 M100 M250
$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 6 \\ & 6 T \\ & 8 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \\ & 300 \end{aligned}$	$\begin{array}{r} 32 \\ 50 \\ 64 \\ 100 \\ 100 \\ 250 \end{array}$	$\begin{aligned} & 0.33 \\ & 0.5 \\ & 0.6 \\ & 0.93 \\ & 0.93 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \\ & 200 \\ & 250 \\ & 250 \\ & 450 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \\ & 2.0 \\ & 1.25 \\ & 1.25 \\ & 0.63 \end{aligned}$	N32 N50 N64 N100 N100 N250
$\begin{gathered} 4 \\ 4 \\ 5 \\ 6 \\ 6 T \\ 7-8 \mathrm{~A} \\ 9 \end{gathered}$	$\begin{aligned} & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \\ & 350 \end{aligned}$	25 32 50 64 64 100 250	$\begin{aligned} & 0.3 \\ & 0.36 \\ & 0.55 \\ & 0.7 \\ & 0.7 \\ & 1.1 \\ & 2.65 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 200 \\ & 200 \\ & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 4.5 \\ & 2.8 \\ & 2.3 \\ & 2.3 \\ & 1.38 \\ & 0.63 \end{aligned}$	P25 P32 P50 P64 P64 P100 P250
$\begin{gathered} 4 \\ 5 \\ 6 \\ 6 T \\ 7-8 A \\ 7-8 A \end{gathered}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$	25 32 50 50 64 100	$\begin{aligned} & 0.33 \\ & 0.41 \\ & 0.63 \\ & 0.63 \\ & 0.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 100 \\ & 150 \\ & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.6 \\ & 3.5 \\ & 3.5 \\ & 2.8 \\ & 1.75 \end{aligned}$	$\begin{aligned} & Q 25 \\ & Q 32 \\ & Q 50 \\ & Q 50 \\ & Q 64 \\ & Q 100 \end{aligned}$
$\begin{gathered} 4 \\ 5 \\ 6 \\ 6 T \\ 7-8 \mathrm{~A} \\ 7-8 \mathrm{~A} \\ 8 \end{gathered}$	$\begin{aligned} & 450 \\ & 450 \\ & 450 \\ & 450 \\ & 450 \\ & 450 \\ & 450 \end{aligned}$	16 25 32 32 50 64 100	0.24 0.36 0.46 0.46 0.7 0.9 1.3	$\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 150 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{array}{r} 11.3 \\ 7.0 \\ 5.6 \\ 5.6 \\ 3.5 \\ 2.8 \\ 1.75 \end{array}$	R16 R25 R32 R32 R 50 R64 R100
$\begin{gathered} 4 \\ 5 \\ 6 \\ 6 T \\ 7-8 A \\ 8-9 A \\ 9 \end{gathered}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{array}{r} 16 \\ 25 \\ 32 \\ 32 \\ 50 \\ 64 \\ 100 \end{array}$	$\begin{aligned} & 0.27 \\ & 0.4 \\ & 0.5 \\ & 0.5 \\ & 0.78 \\ & 1.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 150 \\ & 150 \\ & 200 \\ & 200 \\ & 300 \end{aligned}$	$\begin{array}{r} 15.0 \\ 10.0 \\ 7.9 \\ 7.9 \\ 5.0 \\ 4.0 \\ 2.5 \end{array}$	$\begin{aligned} & \text { S16 } \\ & \text { S25 } \\ & \text { S32 } \\ & \text { S32 } \\ & \text { S50 } \\ & \text { S64 } \\ & \text { S100 } \end{aligned}$

Dissipation factor $(\tan \delta)$ is 0.15 for all types.

[^16]
ELECTROLYTIC CAPACITORS - C433 series

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

High voltage types, double version

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)		leakage current ${ }^{1}$ (mA)	ripplecurrent ${ }^{2}$ (mA)	impedance ${ }^{3}$ (Ω)	type number suffix
3	100	$25+$	+ 25	2×0.1	2×50	2×5	$\mathrm{J} 25+25$
4	100	$50+$	+ 50	2×0.18	2×125	2×2.5	J50 + 50
6	100	125	+125	2×0.4	2×225	2×1.25	J125+125
67	100	125	+ 125	2×0.4	2×225	2×1.25	$\mathrm{J} 125+125$
7-8A	100	$250+$	+250	2×0.78	2×325	2×1.25	$1250+250$
4	150	$32+$	+ 32	2×0.12	2×100	2×3	$K 32+32$
5	150	50	+ 50	2×0.27	2×125	2×2	$K 50+50$
7-8A	150	125	+125	2×0.65	2×225	2×1.25	$K 125+125$
8	150	250	+250	2×1.15	2×325	2×1.25	$\mathrm{K} 250+250$
3	200	16	+ 16	2×0.13	2×50	2×4.50	L16+16
4	200	25	+25 $+\quad 25$	2×0.12	2×75	2×2.50	$L 25+25$
6	200	50	+ 50	2×0.33	2×150	2×1.50	$150+50$
67	200	50	+ 50	2×0.33	2×150	2×1.50	$L 50+50$
9 A	200	125	+125	2×0.75	2×225	2×1.25	$\mathrm{L} 125+125$
3	250	12.5	+ 12.5	2×0.1	2×50	2×6.3	M12.5+12.5
4	250	25	+ 25	2×0.1	2×75	2×3.0	M25+25
5	250	$32-$	+ 32	2×0.25	2×125	2×2.5	$M 32+32$
6	250	50	+ 50	2×0.4	2×125	2×1.5	$\mathrm{M} 50+50$
67	250	50	+ 50	2×0.4	2×150	2×1.5	$\mathrm{M5O}+50$
8	250	125	+125	2×0.95	2×225	2×1.25	M125+125
4	300	16	+ 16	2×0.17	2×50	2×8	N16+16
5	300	25	+ 25	2×0.25	2×100	2×5	$N 25+25$
5	300	32	+ 32	2×0.33	2×100	2×4	$\mathrm{N} 32+32$
6	300	50	+ 50	2×0.5	2×125	2×2.5	$\mathrm{N} 50+50$
67	300	50	+ 50	2×0.5	2×125	2×2.5	$\mathrm{N} 50+50$
8	300	125	+125	2×1.15	2×225	2×1.25	N125+125
3	350	8	+ 8	2×0.1	2×25	2×18	$\mathrm{P} 8+8$
4	350	12.5	+ 12.5	2×0.15	2×50	2×11.3	$\mathrm{P} 12.5+12.5$
4	350	16	+ 16	2×0.2	2×50	2×9	$\mathrm{P} 16+16$
5	350	25	+ 25	2×0.3	2×75	2×5.5	$\mathrm{P} 25+25$
6	350	32 +	+ 32 $+\quad 3$	2×0.36	2×100	2×4.5	$\mathrm{P} 32+32$
6T	350	32	+32 $+\quad 32$	2×0.36	2×100	2×4.5	$\mathrm{P} 32+32$
7-8A	350	50	$+\quad 50$	2×0.55	2×125	2×2.75	$\mathrm{P} 50+50$
9	350	125	+125	2×1.35	2×250	2×1.25	$\mathrm{P} 125+125$
4	400	12.5	+ 12.5	2×0.17	2×50	2×14	$\mathrm{Q} 12.5+12.5$
5	400	16	+ 16	2×0.2	2×75	2×11.2	Q16+16
6	400	25	+ 25	2×0.33	2×100	2×7.0	$Q 25+25$
6 T	400	25	+ 25	2×0.33	2×100	2×7.0	Q25 + 25
7-8A	400	32	+ 32	2×0.41	2×100	2×5.50	$\mathrm{Q} 32+32$
$7-8 \mathrm{~A}$	400	50	+ 50	2×0.63	2×100	2×3.50	$Q 50+50$
4	450	8	+ 8	2×0.12	2×50	2×23	$R 8+8$
5	450	12.5	+ 12.5	2×0.18	2×50	2×14	$\mathrm{R} 12.5+12.5$
6	450	16	+ 16	2×0.24	2×75	2×11.2	$\mathrm{R} 16+16$
6T	450	16	+ 16	2×0.24	2×75	2×11.2	R16+16
7-8A	450	25	$\begin{array}{r}\text { + } \\ + \\ \hline\end{array}$	2×0.36	2×100	2×7.0	$\mathrm{R} 25+25$
7-8A	450	32	$\begin{array}{r} 12 \\ +\quad 1 \end{array}$	2×0.46	2×100	2×5.50	$\mathrm{R} 32+32$
8	450	50	+ 50	2×0.7	2×100	2×3.50	$R 50+50$
3	500	4	+ 4	2×0.08	2×25	2×62.5	S4+4
4	500	8	+ 8	2×0.14	2×50	2×30	$58+8$
5	500	12.5	+ 12.5	2×0.2	2×50	2×20	S12.5+12.5
6	500	16	+ 16	2×0.27	2×75	2×15.6	$\mathrm{S} 16+16$
$6 T$	500	16	+ 16	2×0.27	2×75	2×15.6	$516+16$
7-8A	500	25	+ 25	2×0.4	2×100	2×10	$525+25$
8-9A	500	32	+ 32	2×0.5	2×100	2×8	$532+32$
9	500	50	$+\quad 50$ $+\quad$	2×0.78	2×150	2×5	$550+50$

Dissipation factor $(\tan \delta)$ is 0.15 for all types.

[^17]
C433 series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

Low voltage types

version	$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ (mA)	ripplecurrent ${ }^{2}$ (mA)	dissi- pation factor (tan δ	impedance ${ }^{3}$ (Ω)	type number suffix
Single	4	4	2000	0.27	600	0.50	0.63	B2000
	5	4	3200	0.4	850	0.50	0.40	B3200
	6	4	5000	0.63	1000	0.50	0.25	B5000
	$6 T$	4	5000	0.63	1000	0.50	0.25	85000
	7-8A	4	8000	1.00	1300	0.50	0.15	B8000
	8-9A	4	10000	1.25	1500	0.50	0.15	B10000
Single	4	6.4	1600	0.22	600	0.50	0.63	C1600
	5	6.4	2500	0.50	850	0.45	0.40	C2500
	6	6.4	4000	0.77	1000	0.45	0.25	C4000
	6 T	6.4	4000	0.77	1000	0.45	0.25	C4000
	7-8A	6.4	6400	1.22	1300	0.45	0.15	C6400
	8-9A	6.4	8000	1.55	1500	0.45	0.15	C8000
Single	4	10	1250	0.4	1600	030	0.63	D1250
	5	10	2000	0.63	1850	0.50	0.40	D2000
	6	10	3200	1.00	1000	0.40	0.25	D3200
	$7{ }^{6 T}$	10	3200	1.00	1000	0.40	0.25	D3200
	7-8A	10	5000	1.50	1300	0.40	0.15	D5000
	8-9A	10	6400	2.00	1500	0.40	0.15	D6400
Single	4	16	800	0.4	500	0.25	0.63	E800
	5	16	1250	0.6	700	0.25	0.40	E1250
	6	16	2000	9.0	1000	0.25	0.25	E2000
	6 T	16	2000	1.0	1000	0.25	0.25	E2000
	7-8A	16	3200	1.50	1200	0.35	0.15	E3200
	$8-9 \mathrm{~A}$	16	4000	2.00	1300	0.35	0.15	E 4000
Single	4	25	500	0.4	450	0.20	0.63	F500
	5	25	800	0.6	650	0.20	0.40	
	6	25	1250	1.0	850	0.20	0.25	F1250
	$6 T$	25	1250	1.0	850	0.20	0.25	F1250
	7-8A	25	2000	1.5	1100	0.20	0.15	F2000
	8-9 A	25	2500	2.0	1200	0.20	0.15	F2500
Single	4	40	320	0.4	450	0.15	0.63	G320
	5	40	500	0.6	650	0.15	0.40	G 500
	6	40	800	1.00	800	0.15	0.25	G800
	6 T	40	800	1.00	800	0.15	0.25	G800
	7-8A	40	1250	1.50	1100	0.15	0.15	G1250
	8-9A	40	1600	2.00	1200	0.15	0.15	G1600
Single	4	64	200	0.4	400	0.10	0.63	H200
	5	64	320	0.6	500	0.10	0.40	H320
	6	64	500	1.00	800	0.15	0.25	H500
	6 T	64	500	1.00	800	0.10	0.25	H500
	7-8A	64	800	1.50	1100	0.10	0.15	H800
	8-9A	64	1000	2.00	1200	0.10	0.15	H1000
Double	4	4	$1000+1000$	2×0.15	2×300	0.50	2×1.25	$\mathrm{B} 1000+1000$
	5	4	$1600+1600$	2×0.2	2×425	0.50	2×0.8	$\mathrm{B} 1600+1600$
	6	4	$2500+2500$	2×0.33	2×500	0.50	2×0.5	$\mathrm{B} 2500+2500$
	$7{ }^{6 T}$	4	$2500+2500$	2×0.33	2×500	0.50	2×0.5	$\mathrm{B} 2500+2500$
	7-8A	4	$4000+4000$	2×0.50	2×750	0.50	2×0.3	$\mathrm{B} 4000+4000$
	8-9 A	4	$5000+5000$	2×0.63	2×750	0.50	2×0.3	B5000 +5000
Double	4	10	$640+640$	2×0.2	2×300	0.30	2×1.25	D640 +640
	5	10	$1000+1000$	2×0.33	2×425	0.30	2×0.8	D1000 + 1000
	6	10	$1600+1600$	2×0.50	2×500	0.40	2×0.5	D1 $600+1600$
	6 T	10	$1600+1600$	2×0.50	2×500	0.40	2×0.5	D1600 + 1600
	7-8A	10	$2500+2500$	2×0.75	2×650	0.40	2×0.3	D2500 +2500
	8-9A	10	$3200+3200$	2×1.00	2×750	0.40	2×0.3	$\mathrm{D} 3200+3200$
Double	4	25	$250+250$	2×0.2	2×225	0.20	2×1.25	$F 250+250$
	5	25	$400+400$	2×0.3	2×325	0.20	2×0.8	$F 400+400$
	6	25	$640+640$	2×0.75	2×425	0.20	2×0.5	F640 + 640
	6 T	25	$640+640$	2×0.75	2×425	0.20	2×0.5	F640 + 640
	7-8A	25	$1000+1000$	2×0.78	2×550	0.20	2×0.3	F1000 + 1000
	$8-9 \mathrm{~A}$	25	$1250+1250$	2×1.00	2×600	0.50	2×0.3	F1250 +1250
Double	4	64	$100+100$	2×0.2	2×200	0.10	2×1.25	$\mathrm{H} 100+100$
	5	64	$160+160$	2×0.3	2×250	0.10	2×0.8	H160 + 160
	6	64	$250+250$	2×0.5	2×400	0.10	2×0.5	H250 + 250
	6 T	64	$250+250$	2×0.5	2×400	0.10	2×0.5	$\mathrm{H} 250+250$
	7-8A	64	$400+400$	2×0.75	2×550	0.10	2×0.3	H400 + 400
	8-9A	64	$500+500$	2×1.00	2×600	0.10	2×0.3	$\mathrm{H} 500+500$

For footnotes see preceding pages.

ELECTROLYTIC CAPACITORS - C433 series

LARGE TYPE, FOR HIGH AND LOW VOLTAGES

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the tables.

Can size 4

Can size 5

Can sizes 7, 8A

Can sizes 6, 6T

Can sizes 8, 9A

C441 series - ELECTROLYTIC CAPACITORS

LARGE SCREW BASE TYPE, FOR HIGH VOLTAGES

These capacitors are used as smoothing capacitors in cases where a special design is required. They are used as repiacement types or for experimental work by the amateur and in laboratories.

C34

ELECTROLYTIC CAPACITORS - C441 series

LARGE SCREW BASE TYPES, FOR HIGH VOLTAGES

working voltage (V)										
peak voltage at $70^{\circ} \mathrm{C}(\mathrm{V})$	64	100	150	200	250	300	350	400	450	500

Single version

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($\mu \mathrm{A}$)	ripple current ${ }^{2}$ (mA)	dissipation factor $(\tan \delta)$	impedance ${ }^{3}$ (Ω)	type number suffix
1	500	25	530	140	0.15	2	S25C
2	450	50	700	200	0.15	3.5	R50C

Double version

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($\mu \mathrm{A}$)	ripple current ${ }^{2}$ (mA)	dissipation factor $(\tan \delta)$	impedance ${ }^{3}$ (Ω)	type number suffix
1	500	$12.5+12.5$	$280+280$	$70+70$	0.15	$20+20$	S12.5+12.5C
1	450	$16+16$	$240+240$	$75+75$	0.15	$11.2+11.2$	$\mathrm{R} 16+16 \mathrm{C}$
1	400	$25+25$	$330+330$	$100+100$	0.15	$7+7$	$\mathrm{Q} 25+25 \mathrm{C}$
2	500	$25+25$	$400+400$	$100+100$	0.15	$10+10$	S25 + 25C
3	500	$32+32$	$500+500$	$100+100$	0.15	$8+8$	S32+32C
1	200	$50+50$	$330+330$	$150+150$	0.15	$1.5+1.5$	L50 + 50C
1	300	$50+50$	$500+500$	$125+125$	0.15	$2.5+2.5$	$\mathrm{N} 50+50 \mathrm{C}$
2	400	$50+50$	$630+630$	$100+100$	0.15	$3.5+3.5$	Q50 + 50C
3	450	$50+50$	$700+700$	$100+100$	0.15	$3.5+3.5$	R $50+50 \mathrm{C}$
1	100	$125+125$	$350+350$	$300+300$	0.15	$12.5+1.25$	$\mathrm{J} 125+125 \mathrm{C}$
1	64	$250+250$	$500+500$	$400+400$	0.10	$0.5+0.5$	H250 + 250C

${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
${ }^{2}$ Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
${ }^{3}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

Composition of the type number \quad C441GR/. . C

Capacitors are delivered with a nut, insulating ring, and ring provided with a soldering lug.

Special series - ELECTROLYTIC CAPACITORS

LARGE TYPE, FOR HIGH VOLTAGES

High ripple-current capacitors

The capacitors can stand extra high ripple currents. In the case of multiple versions, one section (the one for the high ripple currents) has a separate cathode connection.
They are mainly used as smoothing capacitors in television receivers.
Special attention is drawn to the quadruple types which are ideal for the above application.

High discharge-current capacitors
For applications in which the capacitor is discharged periodically in short periods of time, special construction measures have to be taken. A few types, designed for special purposes, are available.

Bipolar electrolytic capacitors

Contrary to normal electrolytic capacitors, bipolar capacitors may be loaded continuously with small a.c. voltages or with reversed voltages for short periods of time. A d.c. voltage may be applied in either direction. They are used e.g. in voltage-doubler circuits, in single-ended push-pull output stages or as phasing capacitors with small a.c. motors.

Octal-base capacitors

In case a very quick replacement of the electrolytic capacitor should be possible, octal-base capacitors are to be used.

ELECTROLYTIC CAPACITORS - Special series

LARGE TYPE, FOR HIGH VOLTAGES

Fig. 1

Fig. 2

Fig. 3

Fig. 4

C428 series - ELECTROLYTIC CAPACITORS

SMALL LONG LIFE TYPE (Supersedes C427)

This range of electrolytic capacitors has been specially developed for industrial apparatus where long service life and high reliability are essential, e.g. computors, telecommunication and telephone equipment.
High grade materials, an extra reserve of electrolyte and close quality control during manufacture ensure that these capacitors have a life expectancy far superior to normal grade electrolytic capacitors.

Maximum d.c. working voltage

ELECTROLYTIC CAPACITORS - C428 series

SMALL LONG LIFE TYPE

Fig 1.

Fig 2.

Dimensions (mm)

can size	figure 1		figure 2		
	d	I	D	H	S
1	8.3	22.5	11.3	30	10.16
2	10.5	22.5	12.9	31	10.16
3	10.5	30.5	12.9	39	10.16
4	13	30.5	15.3	39	10.16

Composition of the type number

Example: The type numbsr f a $50 \mu \mathrm{~F} / 10 \mathrm{~V}$ capacitor, insulated, is C428AR/D50.

SMALL LONG LIFE TYPE

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance (μ F)	leakage current ${ }^{1}$ (/1A)	$\begin{aligned} & \text { ripple } \\ & \text { current }{ }^{2} \\ & (m A) \end{aligned}$	dissipation factor $(\tan \delta)$	impedance ${ }^{3}$ (Ω)	type number suffix
1	4	25	6	15	0.20	6	B25
1	4	50	7	30	0.30	6	B50
2	4	80	8	20	0.30	4	B80
3	4	160	11.5	96	0.30	2	B160
4	4	320	18	192	0.30	1	B320
1	6.4	20	6.5	12	0.20	6	C20
1	6.4	40	7.5	24	0.25	6	C40
2	6.4	64	9	38	0.25	4	C64
3	6.4	125	13	76	0.25	2	C125
4	6.4	250	21	152	0.25	1	C250
1	10	16	6.5	10	0.15	6	D16
1	10	32	8	20	0.20	6	D32
2	10	50	10	32	0.20	4	D50
3	10	100	15	64	0.20	2	D100
4	10	200	25	128	0.20	1	D200
1	16	10	6.5	10	0.15	6	E10
1	16	20	8	20	0.15	6	E20
2	16	32	10	32	0.15	4	E32
3	16	64	15.5	64	0.15	2	E64
4	16	125	25	128	0.15	1	E125
1	25	6.4	6.5	10	0.10	6	F6.4
1	25	12.5	8	20	0.10	6	F12.5
2	25	20	10	32	0.10	4	F20
3	25	40	15	64	0.10	2	F40
4	25	80	25	128	0.10	1	F80
1	40	4	6.5	10	0.10		G4
1	40	8	8	20	0.10	6	G8
2	40	12.5	10	32	0.10	4	G12.5
3	40	15	25	64	0.10	2	G25
4	40	50	25	128	0.10	1	G50
1	64	2.5	6.5	10	0.10	6	H2.5
1	64	5	8	20	0.10	6	H5
2	64	8	10	32	0.10	4	H8
3	64	16	15.5	64	0.10	2	H16
4	64	32	25.5	128	0.10	1	H32

${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
2 Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$

- Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

Typical curves of impedance, measured at $20^{\circ} \mathrm{C}$, against frequency.

ELECTROLYTIC CAPACITORS - C428 series

SMALL LONG LIFE TYPE

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 1

Can size 3

Can size 2

C432 series - ELECTROLYTIC CAPACITORS

LARGE LONG LIFE TYPE

These high-capacitance, low-voltage capacitors, having a high quality, a long service life and an extreme reliability, are suitable for use as filter and energy-storage capacitors for the power supplies of professional equipment, as for instance computers.

Maximum d.c. working voltage

VOLT	$\begin{gathered} c \\ 6.4 \end{gathered}$	$\begin{gathered} D \\ 10 \end{gathered}$	$\begin{aligned} & E \\ & 16 \end{aligned}$	$\begin{gathered} F \\ 25 \end{gathered}$	$\begin{gathered} 6 \\ 40 \end{gathered}$	$\begin{aligned} & H \\ & 64 \end{aligned}$	100
900							
1000							
1120							
1250							
1600 1600						T	
1800							
2000							
$\begin{aligned} & 2240 \\ & 2500 \end{aligned}$							
2800							
3150							
4000							
4500							
5000							
5600							
6300							
8000							
9000							
11200							
12500		1					
14000							
16000							
18000							
20000							
22400					CAN SIZE		
25000					11		$\times 86 \mathrm{~mm}$
28000					12		108 mm
31500					14	50	86 mm
					15	$50 \times$	108 mm

ELECTROLYTIC CAPACITORS - C432 series

LARGE LONG LIFE TYPE
Dimensions (mm)

can size	S	insulated		
		D	D_{1}	L
11	15	35	48	86
12	15	35	48	108
14	22	50	63	86
15	22	50	63	108

Composition of the type number

insulated, with mounting base: MR

Example:The type number of a $5000 \mu \mathrm{~F} / 16 \mathrm{~V}$ capacitor, insulated, is C432FR/E5000.

Series resistance of a $6.4-40 \mathrm{~V}$ capacitor as a function of temperature.

Series resistance of a 64-100 V capacitor, as a function of temperature.

C432 series - ELECTROLYTIC CAPACITORS

LARGE LONG LIFE TYPE

$\begin{aligned} & \text { can } \\ & \text { size } \end{aligned}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ (mA)	ripple current ${ }^{2}$ (A)	dissipation factor ($\tan \delta$)	type number suffix
11	6.4	10000	1.9	2.1	0.45	C10000
12	6.4	14000	2.7	2.8	0.45	C14000
14	6.4	25000	4.8	3.2	0.45	C25000
15	6.4	31500	6.1	4.9	0.45	C31500
11	10	8000	2.4	2.1	0.35	D8000
12	10	11200	3.4	2.8	0.35	D11200
14	10	20000	6.0	3.2	0.35	D20000
15	10	25000	7.5	4.9	0.35	D25000
11	16	5000	2.4	2.1	0.25	E5000
12	16	7100	3.4	2.8	0.25	E7100
14	16	12500	6.0	3.2	0.35	E12500
15	16	16000	7.7	4.9	0.25	E16000
11	25	3150	2.4	2.1	0.15	F3150
12	25	4500	3.4	2.8	0.15	F4500
14	25	8000	6.0	3.2	0.15	F8000
15	25	10000	7.5	4.9	0.10	F10000
11	40	2240	2.7	2.1	0.10	G2240
12	40	3150	3.8	2.8	0.10	G3150
14	40	5600	6.7	3.2	0.10	G5600
15	40	7100	8.4	4.9	0.10	G7100
11	64	1400	2.7	1.1	0.10	H1400
12	64	2000	3.8	1.5	0.10	H2000
14	64	3550	6.7	2.2	0.10	H3550
15	64	4500	8.4	2.6	0.10	H4500
11	100	900	2.7	1.1	0.10	1900
12	100	1250	3.8	1.5	0.10	11250
14	100	2240	6.7	2.2	0.10	J 2240
15	100	2800	8.4	2.6	0.10	J2800

Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
${ }^{2}$ Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$

Dissipation (W)
as a function of temperature.

ELECTROLYTIC CAPACITORS - C432 series

LARGE LONG LIFE TYPE

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum value at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ is 0.1Ω.

Can size 11

Can size 12

Can size 15

C415 series - ELECTROLYTIC CAPACITORS

SMALL SOLID ALUMINIUM TYPE

Solid electrolyte capacitors offer great advantages over wet types as regards service life, reliability, stability during life, temperature range etc. They are therefore preferable for all kinds of professional and military equipment.
The C415-type is the only solid-electrolyte aluminium capacitor available now.
Although its dimensions are larger than those of solid tantalum types, the electrical performance is almost the same.

Maximum d.c. working voltage.

SMALL SOLID ALUMINIUM TYPE

Dimensions (mm)

can size	insulated version			p.w. version		
	D	L	d	s	L	
3	6.6	14.5	0.6	-	-	
4	6.6	21	0.6	7.62	27.5	
5	8.3	21	0.6	7.62	27.5	
6	10.3	21	0.8	10.16	27.5	

Composition of the type number \quad C415 .. $/$.

Example: The type number of a $20 \mu \mathrm{~F} / 16 \mathrm{~V}$ capacitor, p.w. version, is $\mathrm{C} 415 \mathrm{CC} / \mathrm{E} 20$.

C415 series - ELECTROLYTIC CAPACITORS

SMALL SOLID ALUMINIUM TYPE

Test specification

General

The capacitors considered have been subjected to extensive electrical, climatic and mechanical tests. As no standard test specification for solid-electrolyte aluminium capacitors exists up till now, a special specification has been made up from the severest tests that could be found in existing specifications. The most important tests are given below.

Life test

The capacitors are submitted to a 5000 -hours life test at full voltage and a temperature of $85^{\circ} \mathrm{C}$. After the test the capacitance, leakage current and impedance shall not exceed the values listed in columns 4, 5 and 8. (See table page C49).
The maximum change in capacitance shall not exceed 5% of the initial measurements. The leakage current shall not exceed the initial leakage current requirements. The impedance shall not exceed the initial requirements.

Moisture resistance

a. The capacitors are tested in accordance with test C, severity IV of IEC publication 68-2 (56 days at $40^{\circ} \mathrm{C}$ and $90-95 \%$ r.h.).
After the test the capacitance, leakage current and impedance shall not exceed the values listed in columns 4,5 and 8 . The change in capacitance shall not be more than 5% of the initial value, d.c. leakage and impedance shall not exceed the initial requirements.
b. The capacitors are tested in accordance with method 106 of MIL-STD-202.

After the test the capacitance shall not change more than 5% of the initial value, d.c. leakage and impedance shall not exceed the initial requirements.

Temperature and immersion cycling

The capacitors will withstand temperature and immersion cycling as per MIL-STD-202, Methods 102 and 104 respectively (including 5 cycles between $-55^{\circ} \mathrm{C}$ and $+125^{\circ} \mathrm{C}$). After these tests, the capacitance shall not change more than 5% of the initial value, d.c. leakage and impedance shall not exceed the initial requirements.

Charge and discharge

The capacitors may be charged and discharged unrestrictedly. In particular they may be submitted to test 3.2 .8 of the specification CCTU $02-10$ of 15.11 .1962. The capacitors are subjected to 10^{6} cycles, each cycle comprising a charge and discharge time of 0.5 sec ., and an RC-time of 0.1 sec .
After the test the change in capacitance shall not exceed 3% of the initial value.

Storage

The capacitors may be stored for any length of time. After a storage of one year at a temperature below $40^{\circ} \mathrm{C}$ the change in capacitance shall not exceed 5% of the initial value, d.c. leakage and impedance shall not exceed the initial requirements.

ELECTROLYTIC CAPACITORS - C415 series

SMALL SOLID ALUMINIUM TYPE

section can size	2 working voltage (V)	4 capacitance ($\mu \mathrm{F}$)	5 leakage current ${ }^{1}$ ($\mu \mathrm{A}$)	6 ripple current ${ }^{2}$ (mA)	7 dissipation factor (tan δ)	$\begin{gathered} 8 \\ \text { impedance }^{\mathrm{a}}(\Omega) \\ \hline \end{gathered}$		type number suffix
						$+20^{\circ} \mathrm{C}$	$-80^{\circ} \mathrm{C}$	
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	4 4 4 4	16 32 64 100	12.5 32 64 100	4 10 20 32	0.15 0.15 0.15 0.15	2.5 1.0 0.5 0.3	10 4 2 1.2	B16 B32 B64 B100
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	6.4 6.4 6.4 6.4	12.5 25 50 80	12.5 32 64 100	4 10 20 32	0.15 0.15 0.15 0.15	2.5 1.0 0.5 0.3	10 4 2 1.2	C 12.5 C 25 C 50 C 80
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	10 10 10 10	8 16 32 50	12.5 32 64 900	4 10 20 32	0.1 0.1 0.1 0.1	2.5 1.0 0.5 0.3	10 4 2 1.2	D8 D16 D32 D50
3 4 5 6	16 16 16 16	5 10 20 32	12.5 32 64 100	4 10 20 32	0.1 0.1 0.1 0.1	2.5 1.0 0.5 0.3	10 4 2 1.2	E5 E10 E20 E32
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	25 25 25 25	3.2 6.4 12.5 20	12.5 32 64 100	4 10 20 32	0.1 0.1 0.1 0.1	2.5 1.0 0.5 0.3	10 4 2 1.2	F3.2 F6.4 F12.5 F20
3 4 5 6	40 40 40 40	$\begin{gathered} 2 \\ 4 \\ 8 \\ 12.5 \end{gathered}$	12.5 32 64 100	$\begin{array}{r} 4 \\ 10 \\ 20 \\ 32 \end{array}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	2.5 1.5 0.75 0.48	10 4 2 1.2	G2 G4 G8 G12.5

${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 1 minute
${ }^{2}$ Maximum permissible current at $100 \mathrm{c} / \mathrm{s}$
Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

Typical curve of capacitance đgainst temperature

C415 series - ELECTROLYTIC CAPACITORS

SMALL SOLID ALUMINIUM TYPE

Typical curve
of the dissipation factor as a function of temperature

Typical curve of the impedance against temperature

ELECTROLYTIC CAPACITORS - C415 series

SMALL SOLID ALUMINIUM TYPE

Typical curve of the dissipation factor as a function of frequency

Typical curve of the impedance, measured at $20^{\circ} \mathrm{C}$, against frequency

Typical curve
of leakage current against applied d.c. voltage

C421 series - ELECTROLYTIC CAPACITORS

SOLID TANTALUM TYPE

Solid electrolytic tantalum capacitors offer great advantages over wet types as regards service life, reliability, stability during life, temperature range etc. Apart from this, very small dimensions are achieved. They are therefore preferable for all kinds of miniaturised professional and military equipment. C421 capacitors are conform Mil-C26655B

Dimensions (mm)

Can size	D	insulated version		
	3.42	7.8	0.5	
DT 1	4.70	12.6	0.5	
DT 2	7.35	18.0	0.63	
DT 3	8.9	20.4	0.63	
DT 4				

Construction


```
tolerance on capacitance . . . . . . . . . . . }\pm20% (10% on request
temperature range with rated voltage . . . . . -55/+85 }\textrm{C
    with derated voltage . . . . }125\mp@subsup{5}{}{\circ}\textrm{C
standard MIL specifications . . . . . . . . . . MIL-C 26655B, styles: CS 12/CS 13; MIL STD-202
```

voltage indication	permissible d.c. voltage (V)		peak voltage ${ }^{1}$ (V)	
	at $85^{\circ} \mathrm{C}$	at $125^{\circ} \mathrm{C}$	at $85^{\circ} \mathrm{C}$	at $125^{\circ} \mathrm{C}$
B	6	4	8	5
C	10	7	12	9
D	15	10	17	12
E	20	13	23	16
F	35	20	41	24

${ }^{\text {a }}$ AC valtage superimposed.

Composition of the type number C421 AM/.

Example. The type number of a $15 \mu \mathrm{~F} / 20 \mathrm{~V}$ capacitor is C421AM/EP15.

C421 series - ELECTROLYTIC CAPACITORS

SOLID TANTALUM TYPE

Test specification

Load test
After 2.000 hours of loading at $65^{\circ} \mathrm{C}$ and the full rated voltage, the capacitance and leakage current are measured ace. to MIL specs. The capacitance shall not have changed by more than 10% of the initial value, the leakage current shall not exceed the listed value by more than 25%.

Shock and vibration

The capacitors shall withstand an 8 -hour vibration test as per MIL-STD-202, method 204 test frequency $55-2,000 \mathrm{c} / \mathrm{s}$.

Temperature and immersion cycling

After a temperature and immersion cycling test as per MIL-STD-202 (methods 102 and 104 respectively) the capacitance, leakage current and dissipation factor are measured acc. to MIL specs. The capacitance shall not have changed by more than 5% of the initial value; the leakage current and the dissipation factor shall not exceed the listed values.

Salt spray

After a test as per MIL-STD-202, method 101, the capacitors shall show no corrosion or harmful effects.

Moisture resistance

After a test as per MIL-STD-202, method 106, the capacitance, leakage current and dissipation factor are measured acc. to MIL specs. The capacitance shall not have changed by more than 5% of the initial value; the leakage current and the dissipation factor shall not exceed the listed values.

Ripple current

The capacitors may be operated at a superimposed a.c. ripple voltage, provided that this does not cause the limit of the heat dissipation to be exceeded. This limit depends on the ripple frequency, ambient temperature and capacitance.
The ripple current I_{r}, permissible at $25^{\circ} \mathrm{C}$ and $100 \mathrm{c} / \mathrm{s}$, is calculated from the equation $I_{r}=2.7 f E_{r} \mathrm{C}$, where $f=$ the ripple frequency in $c / s ; E_{\Gamma}=$ the ripple voltage (see graph 1); $C=$ the capacitance in F. The ripple voltage E_{r}, permissible at any temperature T and frequency f, is calculated by means of the graphs 1-2 and the equation $E_{r}=E_{100} \times E_{25} / R_{r}$, where
$E_{r}=$ the ripple voltage at $25^{\circ} \mathrm{C}$ and $100 \mathrm{c} / \mathrm{s}$, see fig. 1 .
$E_{100}=$ the ripple voltage at $\mathrm{T}^{\circ} \mathrm{C}$ and $100 \mathrm{c} / \mathrm{s}$, see fig. 1 .
$E_{25}=$ the ripple voltage at $25^{\circ} \mathrm{C}$ and $f \mathrm{c} / \mathrm{s}$. see fig. 2.

ELECTROLYTIC CAPACITORS - C421 series

SOLID TANTALUM TYPE

$\begin{gathered} \text { can } \\ \text { size } \end{gathered}$	working voltage (V)	capacitance ($\mu \mathrm{F}$)	leakage current ${ }^{1}$ ($\mu \mathrm{A})$	impedance ${ }^{2}$ ($\Omega)$	type number suffix
DT1	6	6.8	1	8.7	BP6.8
DT2	6	47	6	2.5	BP47
DT3	6	150	18	0.8	BP150
DT4	6	330	40	0.4	BP330
DT1	10	4.7	1	11.2	CP4.7
DT2	10	33	7	1.9	CP33
DT3	10	100	20	0.5	CP100
DT4	10	220	44	0.25	CP220
DT1	15	3.3	1	8.8	DP3.3
DT2	15	22	7	1.3	DP22
DT3	15	68	20	0.4	DP68
DT4	15	150	45	0.25	DP150
DT1	20	2.2	1	8.8	EP2.2
DT2	20	15	6	1.3	EP15
DT3	20	47	19	0.5	EP47
DT4	20	100	40	0.25	EP100
DT1	35	0.33	1	29	FPO, 33
	35	0.47	1	20	FP0,47
	35	0.68	1	14	FP0,68
	35	1	1	10	FP1
DT2	35	1.5	1	6.3	FP1.5
	35	2.2	2	5	FP2.2
	35	3.3	2	3.8	FP3,3
	35	4.7	3	2.5	FP4.7
	35	6.8	5	1.9	FP6.8
DT3	35	10	7	1	FP10
	35	15	11	0.7	FP15
DT4	35	22	15	0.5	FP22
	35	33	23	0.4	FP33
	35	47	33	0.25	FP47

Maximum leakage current at $25^{\circ} \mathrm{C}$ after 5 minutes
Maximum impedance at $25^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$
Other capacitance values are available on request, provided acceptable quantities are ordered.

C420 series - ELECTROLYTIC CAPACITORS

ULTRA SMALL WET TANTALUM TYPE

Maximum d.c. working voltage

ULTRA SMALL WET TANTALUM TYPE

Dimensions (mm)

can size	d	1
NT1	1.8	5
NT2	2.3	7
NT3	3.3	9

Colour code

For example, a $0.64 \mu \mathrm{~F} / 25 \mathrm{~V}$ tantalum capacitor is marked as follows:

$$
\mathrm{I}=\operatorname{grey}(6.4 \mu \mathrm{~F})
$$

II $=$ gold ($\times 0.1$)
III = green (25 V).

colour	I (μF)	II (multiplicand of I)	$I I \prime$ (V)
black	1	1	2.5
brown	1.25	10	4
red	1.6	100	6.4
orange	2	1000	10
yellow	2.5	-	16
green	3.2	-	25
blue	4	-	-
violet	5	-	-
grey	6.4	-	-
white	8	-	-
silver	-	0.01	-
gold	-	0.1	-

	mperature range . $-40 /+55^{\circ} \mathrm{C}$	

Composition of the type number C420 AN/

ULTRA SMALL WET TANTALUM TYPE

$\left.\left.\begin{array}{c|c|c|c|c|c|c}\hline \begin{array}{c}\text { can } \\ \text { size }\end{array} & \begin{array}{c}\text { working } \\ \text { voltage } \\ (V)\end{array} & \begin{array}{c}\text { capacitance } \\ (\mu F)\end{array} & \begin{array}{c}\text { ripple } \\ \text { current } \\ (m A)\end{array} & \begin{array}{c}\text { dissipation } \\ \text { factor } \\ (\text { tan } \delta)\end{array} & \begin{array}{c}\text { impedance }\end{array} \\ \hline 1 & 2.5 & 6.4 & 0.5 & 0.2 & (\Omega)\end{array}\right] \begin{array}{c}\text { type number } \\ \text { suffix }\end{array}\right]$

Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes is $1 \mu \mathrm{~A}$ for all types.

[^18]
ELECTROLYTIC CAPACITORS - C420 series

ULTRA SMALL WET TANTALUM TYPE

Impedance graphs

The impedance at e.g. $100 \mathrm{kc} / \mathrm{s}$ rises at low temperatures, which has to be considered when choosing a capacitor for a given application.
Typical impedance/temperature curves for the different can sizes are given below. The maximum values at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$ are stated in the table.

Can size 1

Can size 2

Can size 3

C280 series - METALLISED POLYESTER CAPACITORS

FLAT FOIL TYPE

Permissible overvoltage:

Special attention is drawn to the fact that the allowed 40% overvoltage for the C280AE range (250 V) permits these capacitors to be employed instead of previously used 400 V capacitors in anode and screen grid circuits.

These capacitors are designed primarily for use as coupling and decoupling capacitors for electronic circuits employing printed wiring.
Due to the almost negligible temperature dependency they offer in many cases essential advantages over ceramic disc capacitors.
The dielectric material used in this range of capacitors is metallised polyethyleneterephtalate for the $250 \mathrm{~V}_{\mathrm{dc}}$ types and metallised polycarbonate for the 400 V dc and $630 \mathrm{~V}_{\mathrm{dc}}$ types.

Specification. For specification and characteristics see pp. C66-C69.

Composition of the type number C280

dielectric 4
$A=$ polyethyleneterephtalate $\left(250 \mathrm{~V}_{\mathrm{dc}}\right)$
$\mathrm{C}=$ polycarbonate ($400 \mathrm{~V}_{\text {dc }}$ and $630 \mathrm{~V}_{\mathrm{dc}}$)

working voltage
$A= \pm 10 \%$
$p= \pm 20 \%$
$\mathrm{E}=250 \mathrm{~V}_{\mathrm{dc}} ; F=400 \mathrm{~V}_{\mathrm{dc}} ; \quad G=630 \mathrm{~V}_{\mathrm{dc}}$

Example: The type number of a $0.033 \mu \mathrm{~F} / 400 \mathrm{~V}$ capacitor with a dielectric of polycarbonate, tolerance $\pm 10 \%$, is C280CF/A33K.

METALLISED POLYESTER CAPACITORS - C280 series

FLAT FOIL TYPE

Temporary the lead length may be longer than the specified length of 12 mm .

capacitance ($\mu \mathrm{F}$)	capacitance code	max. dimensions (mm)								
		$250 \mathrm{~V}_{\mathrm{dc}}$ - C280AE/...			$400 \mathrm{~V}_{\mathrm{dc}}-\mathrm{C} 280 \mathrm{CF} / \ldots$			630V $\mathrm{dc}^{\text {-C280CG/... }}$		
		D	B	H	D	B	H	D	B	H
0.010	10K				4	12.5	10	4	12.5	10.5
0.015	15K				4	12.5	10	5.5	12.5	11.5
0.022	22K	4	12.5	10	4.5	12.5	10.5	6.5	12.5	12.5
0.033	33K	4	12.5	10	5.5	12.5	11.5	6.5	17.5	12.5
0.047	47K	4	12.5	10	6.5	12.5	12.5	7.5	17.5	13.5
0.068	68K	5	12.5	11	6	17.5	12	6.5	22.5	13
0.10	100K	6	12.5	12	7	17.5	13	8	22.5	14.5
0.15	150K	6.5	17.5	11.5	6.5	22.5	13	10	22.5	16.5
0.22	220K	7.5	17.5	12.5	8	22.5	14.5	10	30	16.5
0.33	330 K	7	22.5	13	10	22.5	16.5	11.5	30	20.5
0.47	470K	8.5	22.5	14.5	10	30	16.5	13.5	30	22.5
0.68	680K	10.5	22.5	16.5	11	30	20			
1.0	1M	10.5	30	16.5	13	30	22			
1.5	1 M 5	11.5	30	20						
2.2	2M2	14	30	22.5						

[^19]
C281 series - METALLISED POLYESTER CAPACITORS

MOULDED TYPE

Permissible overvoltage:

Special attention is drawn to the fact that the allowed 40% overvoltage for the C281AB range (250 V) permits these capacitors to be employed instead of previously used 400 V capacitors in anode and screen grid circuits.

These capacitors are designed for use as bypass and general-purpose capacitors in electronic equipment, both in the entertainment field and for industrial purposes. The high permissible a.c. voltage makes these types also appropriate for use as anti-interference capacitor in small electric appliances. The throughout rectangular shape of these capacitors renders them most suitable for wobble-free mounting on printed-wiring boards, either upright or level. The dielectric material used in this range of capacitors is metallised polyethyleneterephtalate for the $250 \mathrm{~V}_{\mathrm{dc}}$ types and metallised polycarbonate for the $400 \mathrm{~V}_{\mathrm{dc}}$ and $630 \mathrm{~V}_{\mathrm{dc}}$ types.

Specification. For specification and characteristics see pp. C66-C69.

Example: The type number of a $2.2 \mu \mathrm{~F} / 250 \mathrm{~V}$ capacitor with a dielectric of polyethyleneterephtalate, tolerance 20%, is C281AB/P2M2.
${ }^{1}$ Since the autumn of 1965 the $V_{d c}$ series with polyethyleneterephtalate dielectric, type C281AD, has been replaced by a new $400 \mathrm{~V}_{\mathrm{dc}}$ series with polycarbonate dielectric, type C281CD, with greatly reduced dimensions.

METALLISED POLYESTER CAPACITORS - C281 series

MOULDED TYPE

Dimensions (mm)

at $\mathrm{L}=14$	$\mathrm{C}=40$	$\mathrm{~d}=0.8$
17.5	40	0.8
23	40	0.8
30	50	1.0

capacitance ($\mu \mathrm{F}$)	capacitance code	max. dimensions (mm)								
		$250 \mathrm{~V}_{\mathrm{dc}}-\mathrm{C} 281 \mathrm{AB} / \ldots$			$400 \mathrm{~V}_{\text {dc }}-\mathrm{C2B1AD}^{1}$			$400 \mathrm{~V}_{\mathrm{dc}}-\mathrm{C} 281 \mathrm{CD} / \ldots{ }^{1}$		
		A	B	L	A	B	L	A	B	L
0.010	10K				8.7	4.7	14	8.7	4.7	14
0.015	15K				9.4	5.5	14	8.7	4.7	14
0.022	22K				10.4	6.5	14	8.7	4.7	14
0.033	33K	8.7	4.7	14	10.4	6.5	17.5	9.4	5.5	14
0.047	47K	8.7	4.7	14	11.5	7.6	17.5	10.4	6.5	14
0.068	68 K	9.4	5.5	14	11.5	7.4	2.3	10.4	6.5	17.5
0.10	100K	10.4	6.5	14	12.8	8.7	23	11.5	7.6	17.5
0.15	150 K	10.4	6.5	17.5	14.4	10.4	23	11.5	7.4	23
0.22	220K	11.5	7.6	17.5	14.6	10.4	30	12.8	8.7	23
0.33	330 K	11.5	7.4	23	16.4	12.4	30	14.4	10.4	23
0.47	470K	12.8	8.7	23	18.4	14.5	30	14.6	10.4	30
0.68	680K	14.4	10.4	23				19.5	12.4	30
1.0	1M	14.6	10.4	30				22	15	30
1.5	$1 \mathrm{M5}$	19.5	12.4	30						
2.2	2M2	22	15	30						

Intermediate values according to the E12 range are available on request. The dimensions are identical to those of the next higher value in the standard E6 range.
The capacitance tolerance is either $\pm 10 \%$ or $\pm 20 \%$.
The preferred tolerance is $\pm 20 \%$ up to and including $0.22 \mu \mathrm{~F}$ and $\pm 10 \%$ from $0.33 \mu \mathrm{~F}$ onwards.

[^20]
C296 series - POLYESTER CAPACITORS

TUBULAR FOIL TYPE

This capacitor is a very reliable general purpose capacitor for electronic circuits. It has found widespread acceptance not only in the radio and television industry, but also in industrial electronics. The dielectric is polyethyleneterephtalate foil.

Specification. For specification and characteristics see pp. C66-C69.

Composition of the type number C296A./A...

$$
A=160 V_{d c}
$$

$\mathrm{C}=400 \mathrm{~V} \mathrm{dc}$

Example: The type number of a $2200 \mathrm{pF} / 400 \mathrm{~V}$ capacitor is C296AC/A2K2.

POLYESTER CAPACITORS - C296 series

TUBULAR FOIL TYPE

capacitance	capacitance code	max. dimensions (mm)			
		$\begin{gathered} 160 \mathrm{~V}_{\mathrm{dc}} \\ \text { C296AA/A... } \end{gathered}$		$\begin{gathered} 400 \mathrm{~V}_{\mathrm{dc}} \\ \text { C296AC/A... } \end{gathered}$	
		D	L	D	L
1000 pF	1 K			7.5	18
1500	1 K 5			7.5	18
2200	2K2			7.5	18
3300	3K3			7.5	18
4700	4K7			7.5	18
6800	6K8			7.5	18
$0.010 \mu \mathrm{~F}$	10K	7.5	18	7.5	18
0.015	15K	7.5	18	7.5	18
0.022	22K	7.5	18	8.5	18
0.033	33K	7.5	18	10	18
0.047	47K	8	18	11.5	18
0.068	68 K	9	18	9.5	32
0.10	100K	10.5	18	11	32
0.15	150K	12	18	12.5	32
0.22	220K	10	32	14.5	32
0.33	330 K	12	32	17	32
0.47	470K	14	32	19.5	32
0.68	680K	16	32		
1.0	1M	18.5	32		

Intermediate values according to the E12 range are available on request. The dimensions are identical to those of the next higher value in the standard E6 range.
The standard capacitance tolerance is $\pm 10 \%$.

POLYESTER CAPACITORS

SPECIFICATION

Type. .	C 280
Working temperature range	$-40 /+85^{\circ} \mathrm{C}$
Working voltage . .	without derating up to $85^{\circ} \mathrm{C}$
Permissible overvoltage during 1 min . per hour	$250 \mathrm{~V}_{\text {de }}$ types: 40%
	400 Vdc and $630 \mathrm{~V}_{\text {dc }}$ types: 25%
Permissible alternating voltage ($50-60 \mathrm{c} / \mathrm{s}$)	$250 \mathrm{~V}_{\text {dc }}$ types: 160 V ac
	$400 \mathrm{~V}_{\text {dc }}$ types: $250 \mathrm{~V}_{\text {ac }}$
	$630 \mathrm{~V}_{\text {dc }}$ types: $300 \mathrm{~V}_{\mathrm{ac}}$
Permissible alternating voltage at other	$250 \mathrm{~V}_{\text {dc }}$ types: page C69, fig. 7
frequencies. .	$400 \mathrm{~V}_{\text {dc }}$ types: page C69, fig. 8
	$630 \mathrm{~V}_{\text {dc }}$ types: for the time being the same as for the $400 \mathrm{~V}_{\text {dc }}$ types
Maximum capacitance drift during life:	
d.c. loaded	1 C max $\pm 5 \%$
a.c. loaded	for $B=12.5 \mathrm{~mm}: \Delta C$ max $=25 \%$
	$B=17.5 \mathrm{~mm}: \Delta \mathrm{C}$ max $=20 \%$
	$B=22.5 \mathrm{~mm}: \Delta C$ max $=15 \%$
	$B=30 \mathrm{~mm}: \Delta C$ max $=10 \%$
Test voltage (d.c.) during 1 minute	$2 \times$ rated d.c. voltage
Breakdown voltage of encasing .	-
Insulation resistance at $20^{\circ} \mathrm{C}$:	
for $\mathrm{C} \leqslant 0.33 \mu \mathrm{~F}$.	$\mathrm{R} \geqslant 30.000 \mathrm{M} \Omega$
for $C>0,33 \mu \mathrm{~F}$.	$R C \geqslant 10.000 \mathrm{sec}$.
Losses ($\tan \delta)$ at $1 \mathrm{kc} / \mathrm{s}$.	$250 \mathrm{~V}_{\text {dc }}$ types: $\leqslant 75 \times 10^{-4}$
	$400 \mathrm{~V}_{\text {dc }}$ and $630 \mathrm{~V}_{\text {de }}$ types : $\leqslant 30 \times 10^{-4}$
Climatic group number	40/085/21 (IEC)
Pulse loads	steepness $<10 \mathrm{~V} / \mathrm{/}$ /sec
Resonance frequency.	page C69,fig. 6
Capacitance versus temperature	page C68,fig. $1: 250 V_{\text {dc }}$ types: curve I $400 \mathrm{~V}_{\mathrm{dc}}$ and $630 \mathrm{~V}_{\text {de }}$ types: curvell
Losses versus temperature	page C68,fig. $2: 250 \mathrm{~V}_{\text {dc }}$ types: curve I $400 \mathrm{~V}_{\text {dc }}$ and $630 \mathrm{~V}_{\text {dc }}$ types: curve II
Insulation resistance versus temperature	$\begin{aligned} \text { page } \mathrm{C} 68 \text {, fig. } 3: & 250 \mathrm{~V}_{\mathrm{dc}} \text { types: curve I } \\ & 400 \mathrm{~V}_{\mathrm{dc}} \text { and } 630 \mathrm{~V}_{\mathrm{dc}} \text { types : curve II } \end{aligned}$
Capacitance versus frequency	page C68,fig. 4
Losses versus frequency	page C69, fig. 5: $250 \mathrm{~V}_{\text {dc }}$ types: curve I $400 \mathrm{~V}_{\mathrm{dc}}$ and $630 \mathrm{~V}_{\mathrm{dc}}$ types: curvell

POLYESTER CAPACITORS

SPECIFICATION

C 281	C 296
$-55 /+85^{\circ} \mathrm{C}$	$-40 /+85^{\circ} \mathrm{C}$
without derating up to $85{ }^{\circ} \mathrm{C}$	without derating up to $85{ }^{\circ} \mathrm{C}$
$250 \mathrm{~V}_{\text {dc }}$ types: 40%	-
$400 \mathrm{~V}_{\text {de }}$ types: 25%	- ${ }^{\text {cos }}$
$250 \mathrm{~V}_{\text {dc }}$ types: $160 \mathrm{~V}_{\text {ac }}$	160 V dc types: $90 \mathrm{~V}_{\mathrm{ac}}$
$400 \mathrm{~V}_{\text {dc }}$ types: 250 Vac	$400 \mathrm{~V}_{\text {de }}$ types: $150 \mathrm{~V}_{\text {ac }}$
$250 \mathrm{~V}_{\text {dc }}$ types: page C69, fig. 7	$160 \mathrm{~V}_{\mathrm{dc}}$ types: page C69, fig. 7
$400 \mathrm{~V}_{\text {dc }}$ types: page C69, fig. 8	$400 \mathrm{~V}_{\text {dc }}$ types: page C69, fig. 8
$\triangle C$ max $\pm 3 \%$	AC max $\pm 5 \%$
for $L=14 \mathrm{~mm} \backslash \subset \mathrm{max}=25 \%$	$\triangle C \max \pm 5 \%$
$\mathrm{L}=17.5 \mathrm{~mm} \Delta \mathrm{C}_{\text {max }}=20 \%$	
$\mathrm{L}=23 \mathrm{~mm} \Delta \mathrm{C}$ max $=15 \%$	
$\mathrm{L}=30 \mathrm{~mm}$ IC max $=10 \%$	
$2 \times$ rated d.c. voltage	$2 \times$ rated d.c. voltage
$>2500 \mathrm{Vac}^{\text {a }}$	-
$\mathrm{R} \geq 30.000 \mathrm{M} \Omega$	$\mathrm{R} \geq 50.000 \mathrm{M} \Omega$
$R C \geq 10.000 \mathrm{sec}$	$\mathrm{RC} \geq 16.500 \mathrm{sec}$
$250 \mathrm{~V}_{\mathrm{dc}}$ and $400 \mathrm{~V}_{\mathrm{dc}}$ types with polyethyleneterephtalate dielectric: $\leqslant 75 \times 10^{\text {4 }}$	$\leqslant 60 \times 10^{-4}$
$400 \mathrm{~V}_{\mathrm{dc}}$ types with polycarbonate dielectric: $\leqslant 30 \times 10^{-4}$	
55/085/56 (IEC)	40/085/21 (IEC)
steepness $<10 \mathrm{~V} / \mu \mathrm{sec}$	- 6
page C69, fig. 6	page C69, fig. 6
page C68, fig. 1-250 $V_{d c}$ and $400 V_{d c}$ types with polyethleneterephtalate dielectric: curve I $400 \mathrm{~V}_{\mathrm{dc}}$ types with polycarbonate dielectric: curve II	page C68, fig. 1, curve 1
page C 68 , fig. 2-250 V_{dc} and $400 \mathrm{~V}_{\mathrm{dc}}$ types with polyethleneterephtalate dielectric: curve! $400 \mathrm{~V}_{\mathrm{de}}$ types with polycarbonate dielectric: curve II	page C68, fig. 2, curve 1
page C68, fig. 3-250 V_{dc} and $400 \mathrm{~V}_{\mathrm{dc}}$ types with polyethyleneterephtalate dielectric: curve I $400 \mathrm{~V}_{\mathrm{dc}}$ types with polycarbonate dielectric: curve II	page C68, fig. 3, curve I
page C68, fig. 4	page C68, fig. 4
page C69, fig. 5-250 V_{dc} and $400 \mathrm{~V}_{\mathrm{dc}}$ types with polyethyleneterephtalate dielectric: curve I $400 \mathrm{~V}_{\mathrm{dc}}$ types with polycarbonate dielectric: curve II	page C69, fig. 5, curve I

POLYESTER CAPACITORS

CHARACTERISTICS

Fig. 2
Losses versus temperature at $1 \mathrm{kc} / \mathrm{s}$

Fig. 4
Capacitance versus frequency

Fig. 1

Capacitance
versus temperature

Fig. 3
Insulation resistance versus temperature

CHARACTERISTICS

Fig. 5
Losses versus frequency

Fig. 6
Resonance frequency versus capacitance at different total wire lengths.

Fig. 7
Permissible alternating voltage versus frequency for capacitors rated $250 \mathrm{~V}_{\mathrm{dc}}\left(160 \mathrm{~V}_{\mathrm{dc}}\right.$ for the C296 series)

Fig. 8
Permissible alternating voltage versus frequency for capacitors rated $400 \mathrm{~V}_{\mathrm{dc}}$

532. series - PAPER CAPACITORS FOR DIRECT CURRENT

INSULATED TUBULAR TYPE

These capacitors are meant for special applications in radio and television circuits such as booster capacitors.

Composition of the type number 532.

$$
\begin{aligned}
A & = \pm 10 \% \\
P & = \pm 20 \%
\end{aligned}
$$

Example: The type number of a $2200 \mathrm{pF} / 600 \mathrm{~V}$ capacitor, tolerance 20%, is $5326 \mathrm{P} / 2 \mathrm{~K} 2$.

PAPER CAPACITORS FOR DIRECT CURRENT - 532. series

INSULATED TUBULAR TYPE

capacitance	capacitance code	$600 \mathrm{~V}_{\mathrm{dc}}-5326 . / \ldots$			$1300 \mathrm{~V}_{\mathrm{dc}}-5328 . / . .$.		
		standard capacitance tolerance (\%)	$\begin{aligned} & \text { max. dimensions } \\ & (\mathrm{mm}) \end{aligned}$		standard capacitance tolerance (\%)	$\begin{aligned} & \text { max. dimensions } \\ & (\mathrm{mm}) \end{aligned}$	
			D	L		D	L
1000 pF	1K	± 20	12	35	± 20	12	35
1500	1 K 5	± 20	12	35	-	-	-
2200	2K2	$\pm 10 / \pm 20$	12	35	± 20	14	35
3300	3K3	$\pm 10 / \pm 20$	12	35	-	-	-
4700	4 K 7	$\pm 10 / \pm 20$	14	35	± 20	16	35
6800	6K8	$\pm 10 / \pm 20$	14	35	-	-	-
$0.010 \mu \mathrm{~F}$	10K	$\pm 10 / \pm 20$	14	35	± 20	18	35
0.015	15K	$\pm 10 / \pm 20$	16	35	-	-	-
0.022	22K	$\pm 10 / \pm 20$	16	35	± 20	18	45
0.033	33K	$\pm 10 / \pm 20$	18	35	-	-	-
0.047	47K	$\pm 10 / \pm 20$	18	45	± 20	21	55
0.068	68 K	$\pm 10 / \pm 20$	18	45	-	-	-
0.10	100K	$\pm 10 / \pm 20$	21	45	± 20	24	55
0.15	150K	$\pm 10 / \pm 20$	21	55	-	-	-
0.22	220K	$\pm 10 / \pm 20$	24	55	-	-	-

On request $600 \mathrm{~V}_{\text {dc }}$ types with intermediate values according to the E 12 series can be supplied.

Types the dimensions of which are given above the dividing lines have a wire diameter of 0.8 mm ; the other types have a wire diameter of 1 mm .

C101/C102 series - PAPER CAPACITORS FOR DIRECT CURRENT

TUBULAR TYPE IN ALUMINIUM CASING

These cylindrical capacitors with impregnated paper dielectric are used in a great variety of equipment (e.g. measuring apparatus) and installations (e.g. for telecommunications) where severe demands have to be met as regards quality, dependability and durability.
The extra-sealed version C 102 is in accordance with R.C.S. specification 11, class H1. These capacitors are thus excellently suited for use at high altitudes and under the most adverse climatic conditions.
working temperature range
working voltage
permissible alternating voltage ($50-60 \mathrm{c} / \mathrm{s}$) . . . $180 \mathrm{~V}_{\mathrm{dc}}$ rypes $350 \mathrm{~V}_{\text {de }}$ types $700 \mathrm{~V}_{\text {de }}$ types $1000 \mathrm{~V}_{\text {dc }}$ types
maximum capacitance drift during life
test voltage (d.c.) during 1 mi -
nute both between terminals and between interconnected terminals and casing insulation resistance at $20^{\circ} \mathrm{C}$.
(osses
losses $(\tan \delta)$ at $1 \mathrm{kc} / \mathrm{s}$. for $C \leqslant 0.1 \mu \mathrm{~F} \leqslant 80 \times 10^{-1}$ at $50 \mathrm{c} / \mathrm{s}$. for $C>0.1 \mu \mathrm{~F} \leqslant 40 \times 10^{-4}$
climatic group number for C101 series 40/085/21 (IEC) for C102 series 40/085/56 (IEC)

Composition of the type number C101../....

Example: The type number of a $8200 \mathrm{pF} / 700 \mathrm{~V}$ capacitor, non-insulated, is $\mathrm{C} 101 \mathrm{AC} / \mathrm{A} 8 \mathrm{~K} 2$.
The same composition of the type number applies to the C102 series; however, the C102 version can be supplied only as an insulated type.

PAPER CAPACITORS FOR DIRECT CURRENT - C101/C102 series

TUBULAR TYPE IN ALUMINIUM CASING

C101 - Insulated or non-insulated

C102-Extra-sealed, insulated

Note. For the insulated types the dimensions D and L should be increased by 1.4 mm

capacitance	$\begin{aligned} & \text { capacitance } \\ & \text { code } \end{aligned}$	dimensions in mm							
		180.		$350 \mathrm{~V}_{\mathrm{de}}$		$700 V_{\text {dc }}$		$1000 \mathrm{Vde}^{\text {d }}$	
		D	1	D	L	D	1	D	L
1000 pF	1K	-	-	-	-	7.6	26	11.1	26
1200	1K2	-	-	-	-	7.6	26	11.1	26
1500	1 K 5	-	-	-	-	7.6	26	11.1	26
1800	1K8	-	-	-	-	7.6	26	11.1	26
2200	2K2	-	-	-	-	7.6	26	11.1	26
2700	2K7	-	-	-	-	7.6	26	11.1	26
3300	3K3	-	-	-	-	7.6	26	11.1	26
3900	3K9	-	-	-	-	7.6	26	11.1	26
4700	4K7	-	-	-	-	7.6	26	11.1	26
5600	5K6	-	-	-	-	7.6	26	11.1	26
6800	6K8	-	-	7.6	26	-	-	11.1	26
8200	8K2	-	-	7.6	26	-	-	11.1	26
$0.010 \mu \mathrm{~F}$	10K	7.6	26	-	-	-	-	11.1	26
0.012	12K	7.6	26	-	-	-	-	11.1	26
0.015	15K	-	-	-	-	11.1	26	11.1	33
0.018	18K	-	-	-	-	11.1	26	11.1	33
0.022	22K	-	-	11.1	26	-	-	11.1	33
0.027	27K	-	-	11.1	26	11.1	33	15.9	33
0.033	33K	11.1	26	-	-	11.1	33	15.9	33
0.039	39 K	11.1	26	11.1	33	-	-	15.9	33
0.047	47K	-	-	11.1	33	-	-	15.9	33
0.056	56 K	11.1	33	-	-	-	-	15.9	33
0.068	68 K	11.1	33	-	-	15.9	33	19.2	33
0.082	82K	11.1	33	-	-	15.9	33	19.2	33
0.10	100 K	-	-	15.9	33	19.2	33	15.9	53
0.12	120 K	-	-	15.9	33	19.2	33	15.9	33
0.15	150K	15.9	33	19.2	33	15.9	53	19.2	53
0.18	180K	15.9	33	19.2	33	15.9	53	19.2	53
0.22	220 K	19.2	33	15.9	53	-	-	19.2	53
0.27	270K	19.2	33	15.9	53	19.2	53	25.6	53
0.33	330 K	15.9	53	-	-	19.2	53	25.6	53
0.39	390 K	15.9	53	19.2	53	-	-	25.6	53
0.47	470K	-	-	19.2	53	25.6	53	-	-
0.56	560 K	19.2	53	-	-	25.6	53	-	-
0.68	680 K	19.2	53	25.6	53	-	-	-	-
0.82	820K	-	-	25.6	53	-	-	-	-
1	1 M	25.6	53	-	-	-	-	-	-

All types the dimensions of which are given below the dividing lines, are wound with extended foils and are also suitable for low working voltages (smaller than 1 mV).

826. . series - PAPER CAPACITORS FOR DIRECT CURRENT

TUBULAR TYPE IN CERAMIC CASING FOR HIGH VOLTAGES

These capacitors are intended for high-voltage d.c. applications. Due to their hermetic sealing they are proof against atmospheric influences for an indefinite length of time. They are suited for use at high altitudes, as well as in polar and tropical regions.
The earthing end of the capacitor is marked with a silver-coloured dot (A in the dimensional drawing).

```
tolerance on capacitance . . . . . . . . . . . . . . }\pm10
working temperature range . . . . . . . . . }-40/+7\mp@subsup{0}{}{\circ}\textrm{C
working voltage . . . . . . . . . . . . . . . above }4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to be derated by 0.9% per }\mp@subsup{}{}{\circ}\textrm{C
permissible alternating voltage (50/60 c/s) . . . . . 33% of working voltage
maximum capacitance drift during life ........ }\DeltaC\leqslant2
test voltage during 1 minute . . . . . . . . . . . . 2.25 x max. working voltage
insulation resistance at }2\mp@subsup{0}{}{\circ}\textrm{C}......... . . . . R\geqslant20.000 M
losses (tan \delta) at 1 kc/s, for C<0.1 \mu\textrm{F}....... \leqslant 80\times10-4
    at 50 c/s, for C\geqslant0.1 \mu\textrm{F}...... }\leqslant40\times1\mp@subsup{0}{}{-4
climatic group number . . . . . . . . . . . . . . 40/070/56 (IEC)
```

Composition of the type number $826 \ldots \mathbf{A}$ code for capacitor length :

31 if $\mathrm{L}=28 \mathrm{~mm}$
$N=2000 \mathrm{~V}$ dc
32 if $L=48 \mathrm{~mm}$
$M=4000 V_{\mathrm{dc}}$
48 if $L=71 \mathrm{~mm}$
$\mathrm{R}=6000 \mathrm{~V} \mathrm{dc}$
49 if $L=91 \mathrm{~mm}$
$U=8000 \mathrm{~V}_{\mathrm{dc}}$
50 if $\mathrm{L}=116 \mathrm{~mm}$
$\mathrm{L}=10000 \mathrm{~V}_{\mathrm{dc}}$
51 if $\mathrm{L}=131 \mathrm{~mm}$
52 if $L=171 \mathrm{~mm}$
53 if $\mathrm{L}=216 \mathrm{~mm}$

Example: The type number of a $2200 \mathrm{p} / 2000 \mathrm{~V}$ capacitor with a length of 28 mm is $82631 \mathrm{~A} / \mathrm{N} 2 \mathrm{~K} 2$

PAPER CAPACITORS FOR DIRECT CURRENT - 826..series

TUBULAR TYPE IN CERAMIC CASING FOR HIGH VOLTAGES

Fig. 1

Fig. 2

capacitance	capacitance code	max. dimensions (mm)									
		$2000 \mathrm{~V}_{\text {dc }}$		$4000 \mathrm{~V}_{\mathrm{de}}$		$6000 \mathrm{~V}_{\text {dc }}$		$8000 \mathrm{~V}_{\mathrm{dc}}$		$10000 \mathrm{~V}_{\text {de }}$	
		D	L	D	L	D	L	D	L	D	L
470 pF	470E	11.4	28	11.4	48	11.4	71	11.4	91	11.4	116
680	680E	11.4	28	11.4	48	11.4	71	11.4	91	11.4	116
1000	1K	11.4	28	11.4	48	11.4	71	17.7	91	17.7	116
1500	1 K 5	11.4	28	11.4	48	17.7	71	17.7	91	17.7	116
2200	2K2	11.4	28	17.7	48	17.7	71	17.7	91	21.8	116
3300	3K3	11.4	28	17.7	48	21.8	71	21.8	91	27.4	116
4700	4K7	17.7	28	17.7	48	21.8	71	27.4	91	27.4	116
6800	6K8	17.7	28	21.8	48	27.4	71	34.8	91	21.8	216
$0.01 \mu \mathrm{~F}$	10 K	21.8	28	27.4	48	34.8	71	21.8	171	27.4	216
0.015	15K	21.8	28	34.8	48	21.8	131	27.4	171	27.4	216
0.022	22K	27.4	28	21.8	91	27.4	131	34.8	171	34.8	216
0.033	33K	21.8	48	27.4	91	34.8	131	43	171	43	216
0.047	47K	21.8	48	34.8	91	43	131	43	171	53.4	216
0.068	68K	27.4	48	43	91	53.4	131	53.4	171	-	-
0.10	100K	34.8	48	53.4	91	53.4	131	-	-	-	-

These capacitors are available in two types:
(a) with axial connecting wires (fig. 1); the dimensions are given above the dividing lines;
(b) with connecting lugs (fig. 2); the dimensions below those lines pertain to this type.

C113 series - PAPER CAPACITORS FOR DIRECT CURRENT

BOX TYPE FOR TELEPHONY

These capacitors are designed and especially shaped for multiple assembly in the bays of standard European.telephone exchanges, where they are intended for general purposes.

colerance on capacitance	$\pm 10 \%$
working temperature range	$-40 /+70^{\circ} \mathrm{C}$
working voltage.	250 V ; above $40^{\circ} \mathrm{C}$ to be derated by 0.9% per ${ }^{\circ} \mathrm{C}$
maximum capacitance drift during life	$\Delta \mathrm{C} \leqslant 5 \%$
test voltage during 1 minute:	
(a) between terminals	$2.5 \times$ working voltage
(b) for multiple-section types between sections	$2.5 \times$ working voltage
(c) between interconnected terminals and casing	$1000 \mathrm{~V}_{\text {dc }}$
insulation resistance at $20^{\circ} \mathrm{C}$	$\mathrm{RC} \geqslant 2.000 \mathrm{sec}$
losses ($\tan \delta)$ at $1 \mathrm{kc} / \mathrm{s}$	$\leqslant 60 \times 10^{-4}$
climatic group number	40/070/21 (IEC)

PAPER CAPACITORS FOR DIRECT CURRENT - 8228. series

RECTANGULAR BOX TYPE

These capacitors are suitable for apparatus and installations on which the severest demands are imposed such as stationary and mobile telecommunication installations and measuring apparatus (e.g. for coupling, decoupling and smoothing in transmitters and amplifiers, as separating capacitors in filter circuits and suchlike).

Composition of the type number 8228. A/
code for construction

$0=$ fig. 2, height 50 mm
$C=250 V_{d c}$
$2=$ fig. 2, height 125 mm
$E=500 V_{\text {dc }}$
$3=$ fig. 3, height 50 mm
$V=1000 V_{d c}$
$5=$ fig. 3 , height 125 mm
$M=2000 V_{d c}$
$8=$ fig. 4, height 125 mm
$\mathrm{S}=3400 \mathrm{~V}_{\mathrm{dc}}$
Example: The type number of a $3 \mu \mathrm{~F} / 1000 \mathrm{~V}$ capacitor with a height of 125 mm according to fig. 3 , is $82285 \mathrm{~A} / \mathrm{V} 3 \mathrm{M}$.

RECTANGULAR BOX TYPE

Fig. 2

* 7.5 mm when $\mathrm{A}($ fig. 1$)=15 \mathrm{~mm}$

capacitance ($\mu \mathrm{F}$)	capacitance code	construction and dimensions (mm)							
		250 Vdc				$500 \overline{V_{\text {dc }}}$			
		fig.	A	H	h	fig.	A	H	h
0.1	100K								
0.12	120K								
0.16	160 K								
0.2	200 K								
0.25	250K								
0.3	300 K								
0.4	400K								
0.5	500 K								
0.6	600K								
0.8	800K					2	15	50	14
1	1M					2	20	50	14
1.2	1 M 2	2	15	50	14	2	20	50	14
1.6	$1 \mathrm{M6}$	2	20	50	14	2	25	50	14
2	2 M	2	20	50	14	2	30	50	14
2.5	2M5	2	25	50	14	2	40	50	14
3	3M	2	30	50	14	2	45	50	14
4	4M	2	40	50	14	2	60	50	14
5	5M	2	45	50	14	2	30	125	11.5
6	6 M	2	55	50	14	2	35	125	11.5
8	8M	2	30	125	11.5	2	45	125	11.5
10	10M	2	35	125	11.5	2	55	125	11.5
12	12M	2	45	125	11.5	4	75	125	17.5
16	16M	2	55	125	11.5	4	90	125	17.5
20	20M	4	75	125	17.5	4	120	125	17.5
25	25M	4	90	125	17.5				

PAPER CAPACITORS FOR DIRECT CURRENT - 8228. series

RECTANGULAR BOX TYPE

Fig. 3

Fig. 5

Fig. 4

* 7.5 mm when A (fig. 1) $=15 \mathrm{~mm}$

construction and dimensions (mm)												capacitance code
$1000 \mathrm{~V}_{\mathrm{dc}}$				$2000 \mathrm{~V}_{\mathrm{dc}}$				$3400 \mathrm{~V}_{\mathrm{dc}}$				
fig.	A	H	h	fig.	A	H	h	fig.	A	H	h	
				3	15	50	16	3	25	50	21	100K
				3	15	50	16	3	25	50	21	120 K
				3	15	50	16	3	35	50	21	160 K
				3	20	50	16	3	45	50	21	200K
				3	20	50	16	3	55	50	21	250K
				3	25	50	16	3	60	50	21	300 K
3	15	50	12	3	30	50	16	3	25	125	18.5	400K
3	15	50	12	3	35	50	16	3	35	125	18.5	500K
3	20	50	12	3	40	50	16	3	35	125	18.5	600K
3	25	50	12	3	50	50	16	3	50	125	18.5	800K
3	30	50	12	3	25	125	13.5	3	60	125	18.5	1M
3	35	50	12	3	25	125	13.5	4	75	125	26.5	1M2
3	45	50	12	3	35	125	13.5	4	90	125	26.5	1M6
3	50	50	12	3	45	125	13.5	4	120	125	26.5	2M
3	60	50	12	3	50	125	13.5					$2 \mathrm{M5}$
3	30	125	9.5	3	60	125	13.5					3M
3	40	125	9.5	4	90	125	21.5					4 M
3	45	125	9.5	4	105	125	21.5					5 M
3	55	125	9.5	4	120	125	21.5					6M
4	75	125	17.5									8M
4	90	125	17.5									10M
4	105	125	17.5									12M
												16 M
												20M
												25M

If desired use can be made of mounting brackets as illustrated in fig. 5: two if A (fig. 1) is smaller than 60 mm , four if A is 60 mm or larger. The type numbers of the mounting brackets are: $88480 / 00$ for $H($ fig. 1) $=50 \mathrm{~mm}$, $88480 / 02$ for $H(f i g .1)=125 \mathrm{~mm}$.
Two wires of max. $0.75 \mathrm{sq} . \mathrm{mm}$ can be connected to each soldering tag in the case of glass lead-ins, and two wires of max. $1.5 \mathrm{sq} . \mathrm{mm}$ in the case of ceramic lead-ins.

HIGH-VOLTAGE TYPE FOR SMOOTHING PURPOSES

These capacitors are designed for smoothing high direct voltages but they have also an extensive field of application as coupling and decoupling capacitors. They are proof against atmospheric influences.

| tolerance on capacitance |
| :--- |$\quad \pm 10 \%$

Test voltage across the terminals

type 82570./...		type 178../179..	
working voltage (kV)	test voltage (kV)	working voltage (kV)	test voltage (kV)
	4.2	8	17
	4.5	9.5	20
4.4	5.4	11	23
5.5	8.4	13.5	28.5
6.6	9	16	34
	11	20	45.5
		24	53

PAPER CAPACITORS FOR DIRECT CURRENT

HIGH-VOLTAGE TYPE FOR SMOOTHING PURPOSES

max. voltage (kV)	capac- itance ($\mu \mathrm{F}$)	(mm)	weight (kg)	type number
2	8	95	2.4	82570A/N8M
2.7	4	95	2.4	82570A/H4M
	6	95	2.4	82570A/H6M
	8	125	3.2	82570A/H8M
3.4	4	125	3.2	82570A/S4M
	6	210	4.8	82570A/S6M
	8	260	5.7	82570A/S8M
4.4	1	65	1.6	82570A/W1M
	2	95	2.4	82570A/W2M
	4	210	4.8	82570A/W4M
	6	310	7.8	82570A/W6M
	8	410	9.2	82570A/W8M
5.5	1	95	2.4	82570A/X1M
	2	125	3.2	82570A/X2M
	4	310	7.8	82570A/X4M
	6	410	9.2	82570A/X6M
	8	510	11.4	82570A/X8M
6.6	1	125	3.2	82570A/Z1M
	2	260	5.7	82570A/Z2M
	4	460	10.4	82570A/Z4M
	6	610	13.8	82570A/Z6M

Type 82570./...

Type 178../179..

HIGH-VOLTAGE TYPE FOR SMOOTHING PURPOSES

max. voltage (kV)	capacitance ($\mu \mathrm{F}$)	max. dimensions (mm)				weight (kg)	type number
		A	B	H	a		
8	2	200	300	470	200	43	17812
	4	200	300	470	200	43	17814
	6	300	350	470	230	75	17816
	8	300	350	470	230	75	17818
	16	400	400	470	270	120	17819
9.5	2	200	300	470	200	43	17832
	4	300	300	470	200	65	17834
	6	300	450	470	330	95	17836
	8	400	450	470	330	130	17838
	16	500	500	470	330	175	17839
11	2	200	300	640	200	64	17852
	4	300	300	640	200	90	17854
	6	300	400	640	370	120	17856
	8	400	400	640	270	160	17858
	16	500	500	640	330	240	17859
13.5	2	200	350	750	230	75	17872
	4	300	350	750	230	120	17874
	6	400	350	750	230	160	17876
	8	400	400	750	270	180	17878
	16	400	600	750	430	250	17879
16	2	300	300	850	200	100	17892
	4	300	350	850	230	130	17894
	6	400	350	850	230	180	17896
	8	400	400	850	270	200	17898
	16	400	600	850	480	300	17899
20	2	300	400	750	270	150	17932
	4	400	450	750	330	200	17934
	6	500	500	750	330	240	17936
	8	500	600	750	430	320	17938
24	2	400	350	750	230	160	17952
	4	400	600	750	430	250	17954
	6	600	600	750	430	350	17956
	8	600	700	750	500	420	17958
27	2	400	450	750	330	200	17972
	4	500	600	750	430	320	17974
	6	600	600	750	430	350	17976
	8	750	800	750	560	600	17978

PAPER CAPACITORS FOR DIRECT CURRENT

HIGH-VOLTAGE TYPE IN INSULATED CASING

These high-tension capacitors are used e.g. in apparatus for X-ray research, nuclear research and testing of high-voltage installations. In these applications the capacitors may be charged either continuously by a direct current (e.g. in a cascade generator) or only during a short period of time and then discharged again (e.g. in a pulse generator). Various other modes of operation are possible.

Types and construction

In view of the many charging conditions which have to be covered, the capacitors are classified into three groups:
(a) for continuous d.c. operation;
(b) for intermittent d.c. operation (30% averaged over 24 hours);
(c) for surge operation (the maximum direct voltage is applied only for short periods, in the order of minutes or even less).

The paper dielectric has been chosen so as to combine optimum performance under the relevant operating conditions with minimum dimensions and low price.
The casing is composed of a high-grade synthetic pot enlarged, if necessary by a number of rings screwed onto this pot to obtain the total volume required.
The top is closed by a cast-iron cover which is connected to one side of the capacitor element, the other connecting terminal being present in the centre of the bottom. For some types the pot and extension rings are provided with flanges of the same material so that the distance between the two terminals is increased and a higher working voltage can be applied. There are two standard diameters of the casing.

```
tolerance on capacitance . . . . . . . . . . . . . . . . . . . . . . . \pm10%
test voltage:
types for continuous operation during 1 sec . . . . . . . . . . . . . . 2.5 × working voltage
types for intermittent operation during 30 minutes . . . . . . . . . . . 1.5 × working voltage
types for surge operation during 10 minutes . . . . . . . . . . . . . . 1.2 × working voltage
insulation resistance at 25 }\textrm{C}... . . . . . . . . . . . . . . . . . . . RC \geqslant 2000 sec
```


PAPER CAPACITORS FOR DIRECT CURRENT

HIGH-VOLTAGE TYPE IN INSULATED CASING

In the following table the maximum permissible direct voltage and the maximum static energy content expressed in terms of joules are given for the various combinations of pot and rings either with or without flanges and for the three different modes of operation.

max. working voltage (kV)	output for the different types (Wsec)			$\begin{aligned} & \text { number } \\ & \text { of } \\ & \text { rings } \end{aligned}$	construction according to fig.	$\begin{gathered} \text { dimensions }(H) \\ \text { in } \mathrm{mm} \end{gathered}$
	continuous operation	intermittent operation	surge operation			
20	15	50	65	1	1	145
30	15	50	65	1	2	145
45	40	135	200	2	1	255
60	40	135	200	2	2	255
60	155	525	760	1	3	245
75	60	220	300	3	1	365
75	155	525	760	1	4	245
100	60	220	300	3	2	365
100	80	310	400	4	1	475
120	320	1100	1850	2	3	465
150	80	310	400	4	2	475
150	100	400	500	5	1	585
150	320	1100	1850	2	4	465
180	530	1800	2800	3	3	685
200	100	400	500	5	2	585
200	120	500	600	6	1	695
225	530	1800	2800	3	4	685
250	120	500	600	6	2	695
250	140	590	700	7	1	805
300	140	590	700	7	2	805

The static energy content is calculated in joules as:
$\frac{1}{2} C U^{2}$, where $C=$ capacitance in microfarads

$$
U=\text { direct working volcage in kilovolts. }
$$

The table serves only as a guidance to illustrate the possibilities of this high-voltage capacitor programme. Quotations can be made only if full decails of the requirements are stated, viz.:

1. capacitance;
2. maximum working voltage:
3. maximum temperature if higher than $40^{\circ} \mathrm{C}$:
4. mode of operation (unless continuous d.c. operation is required):
A. for intermittent d.c.operation; average number of operating hours per day;
B. for surge operation: a. discharge time or discharge frequency; b. reperition frequency;
5. any other information that may be of value for the design of the capacitor.

C84

PAPER CAPACITORS FOR DIRECT CURRENT - B8 002..series

TYPE FOR INTERFERENCE SUPPRESSION IN MOTOR CARS

These tropic proof metallised paper capacitors have been developed for suppressing interference from various electrical car accessories.
Because of the feed-through type of construction, the inductance of these capacitors is very low as is required for use in short-wave and f.m. car radios.
The capacitors consist of a low-inductively wound and impregnated strip of paper upon which a very thin film of metal has been deposited. It is contained in a cylindrical aluminium can (A) having a hollow screw-base with a mounting nut (B). Both ends of the can are sealed with an impermeable layer of synthetic resin, and provided with a terminal nut (C) and a spring washer.

type number.	B800203	B800202
capacitance ($\mu \mathrm{F}$)	$\geqslant 0.5$	$\geqslant 2$
insulation resistance . (M Ω)	$\geqslant 4000$	>1000
R at $100 \mathrm{Mc} / \mathrm{s}$. . . . (Ω)	$\leqslant 0.3$	$\leqslant 0.5$
X at $100 \mathrm{Mc} / \mathrm{s}$. . . . (Ω)	$\leqslant 2.5$	$\leqslant 3.3$
weight (g)	36	64
H (mm)	42	60
D (mm)	21	23
mounting bracket	B1 02006	B1 02007

Impedance at $100 \mathrm{Mc} / \mathrm{s}$ can be calculated from the series resistance R and the reactance X given in the table.

PAPER CAPACITORS FOR ALTERNATING CURRENT

TYPE FOR INTERFERENCE SUPPRESSION IN ELECTRICAL APPLIANCES

These capacitors are widely used for eliminating radio and television interferences, caused by small motor-operated tools, household appliances such as vacuum cleaners, washers, refrigerators, kitchenaids, and by gas-discharge lamps.

```
tolerance on capacitance . . . . . . . . . . . . . . . . -10/+20% (type 62931 }\pm\mathbf{20%}%\mathrm{ for C C )
working temperature range . . . . . . . . . . . . . . }7\mp@subsup{0}{}{\circ}\textrm{C
working voltage
250 Vac
70 Vac(only for type 7350)
```

capacitance		
C_{1}	C_{2}	type number
$(\mu \mathrm{F})$	(PF)	
0.1	5000	62931
0.1	3000	5573
0.05	2500	5571
0.5	-	7350
0.2	5575	5575
0.2	10000	5568

PAPER CAPACITORS FOR ALTERNATING CURRENT

C120/C124/C125 series - BOX TYPE

These capacitors are specially designed for ballasts of luminous-discharge lamps but are also extensively used with single-phase asynchronous motors, and for power-factor correction in low-power devices. They represent the latest stage in the development of paper capacitors in all-metal cans for low a.c. powers

```
working temperature range: for C120/124 series . . . . . . . -20/+80 }\mp@subsup{}{}{\circ}\textrm{C
    for C125 series . . . . . . . . . -20/+70 }\mp@subsup{}{}{\circ}\textrm{C
working voltage . . . . . . . . . . . . . . . . . . . . . . max. 1.1 x V nom
working frequency
maximum capacitance drift during life
test voltage during }1\mathrm{ minute:
    (a) between the terminals
    (b) between terminals and can
insulation resistance at 20 % C between terminals
between terminals and can . .. RC\geqslant2000 sec
losses (tan \delta) at 50 c/s
40-60 c/s beyond 50 c/s V nom
or working temperature should
be derated by 10% or 10 % C resp.
|C max }\pm5
    2.15 V nom
    2500 Vac or 3500 V dc
R\geqslant12000 M\Omega
\leqslant 50\times10-4
```


Type Approvals

A large part of our capacitor programme has been approved by official testing institutes:

Belgium	- CEBEC
Denmark	- DEMKO
Germany	- VDE
Norway	- NEMKO
Sweden	- SEMKO
Switzerland - SEV	

Besides, our capacitors comply with the British BSI specification, and the relevant IEC and CEE recommendations. If required, detailed information is available.

PAPER CAPACITORS FOR ALTERNATING CURRENT

250 V BOX TYPE - C120/C124/C125 series

Dimensions (mm)

		a	b
size I	26	43	18
size II	38	55	22
size III	57	75	25

Fig. 1

Style designation

	fig.1	fig.2	fig.3	fig.4	fig.5	fig.6	fig. 7
size I	C124AA	C124CA	C124EA	C124GA	C124A	C124LA	C124NA
size II	C124BA	C124DA	C124FA	C124HA	C124KA	C124MA	C124PA
size III	C125AA	C125CA	C125EA	C125GA	C125JA	C125LA	C125NA

250V Range (preferred types)
(for capacitance values below $3 \mu \mathrm{~F}$ see higher voltages)

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{3}$	$\mathbf{3 , 5}$	$\mathbf{4}$	$\mathbf{4 , 5}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$
L max (in mm)	50	57	57	62	71	86	86	99	109	124	148
Size	Size I (cross section $26 \times 43 \mathrm{~mm})$ Style designations C124AA-C124CA-C124EA-C124GA										

Capacitance in $\mu \mathrm{F}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 3 , 5}$	$\mathbf{1 5}$	$\mathbf{1 8}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$
L max (in mm)	57	62	71	86	86	99	109	124	148	148	148
Size	Size II (cross section $38 \times 55 \mathrm{~mm}$) Style designations C124BA-C124DA-C124FA-C124HA		Size III Styles C125								

Composition of the type number: a capacitor $8 \mu \mathrm{~F} \pm 10 \%$, 250 V , cross section $26 \times 43 \mathrm{~mm}$ and designed according to fig 3: C120GA/A5M.
The special programme 250 V capacitors for sodium and HPF gas discharge lamps for public lighting is mentioned on page C94.

PAPER CAPACITORS FOR ALTERNATING CURRENT

Fig. 4

Fig. 7

Style designation

	fig. 1	fig. 2	fig. 3	fig.4	fig. 5	fig. 6	fig. 7
size 1	C120AA	C120CA	C120EA	C120GA	C120JA	C120LA	C120NA
size II	C120BA	C120DA	C120FA	C120HA	C120KA	C120MA	C120PA

300V Range (preferred types)
(for capacitance values below $2 \mu \mathrm{~F}$ see higher voltages)

Capacitance in $\mu \mathrm{F} \pm 10 \%-$	$\mathbf{2}$	$\mathbf{2 , 5}$	$\mathbf{3}$	$\mathbf{3 , 5}$	4	4,5	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
L max (in mm)	50	62	71	86	86	99	99	124	148	148

Size	Size I (cross section $26 \times 43 \mathrm{~mm}$) Style designations C120AA-C120CA-C1 20EA-C120GA

${ }^{1}$ For Fluorescent Lamp "Instant-Start Circuit'" purposes 5\% tolerance values can be offered.

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$	14
L max (in mm)	86	86	99	109	124
Size	Size II (cross section $38 \times 55 \mathrm{~mm}$) Style designations C120BA- C120DA-C120FA-C120HA				

Composition of the type number: a capacitor $5 \mu \mathrm{~F} \pm 10 \%, 300 \mathrm{~V}$, cross section $26 \times 43 \mathrm{~mm}$ and designed according to figure 4: C124EA/A8M

PAPER CAPACITORS FOR ALTERNATING CURRENT

380 V BOX TYPE - C120/C124/C125 series

Dimensions (mm)

Fig. 1

Style designation

	fig. 1	fig. 2	fig.3	fig.4	fig.5	fig.6	fig. 7
size I	C120AB	C120CB	C120EB	C120GB	C120JB	C120LB	C120NB
size II	C120BB	C120DB	C120FB	C120HB	C120KB	C120MB	C120PB
size III	C125AB	C125CB	C125EB	C125GB	C125JB	C125LB	C125NB

380V RANGE (preferred types)

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{1 , 5}$	$\mathbf{2}$	2,5	$\mathbf{3}$	$\mathbf{3 , 5} \ldots \mathbf{3 , 8}$	4	5	$5,7 \ldots 6$
L max (in mm)	50	62	86	86	99	109	124	148

Size

Size I (cross section $26 \times 43 \mathrm{~mm}$)
Style designations C120AB-C120CB-C120EB-C120GB

Capacitance in $\mu \mathrm{F} \pm 10 \%$	7	8	10	12	16	20	25
L max (in mm)	99	109	124	86	99	124	148
Size	Size II ($38 \times 55 \mathrm{~mm}$) C120BB-C120DB- C120FB-C120HB			Size III ($57 \times 75 \mathrm{~mm}$) C125AB-C125CB-C125EB-C125GB			

Composition of the type number: a capacitor $6 \mu \mathrm{~F}, 380 \mathrm{~V}$, cross section $26 \times 43 \mathrm{~mm}$ and designed according to fig 4:

- with capacity tolerance $\pm 10 \%$: C120GB/A6M
- with capacity tolerance $\pm 5 \%$: C120GB/B6M

PAPER CAPACITORS FOR ALTERNATING CURRENT

C120/C124/C125 SERIES - 440 V BOX TYPE

Fig. 4

Fig. 6

Fig. 7

Style designation

	fig. 1	fig.2	fig.3	fig.4	fig.5	fig.6	fig. 7
size 1	C120AC	C120CC	C120EC	C120GG	C120JC	C120LC	C120NC
size II	C120BC	C120DC	C120FC	C120HC	C120KC	C120MC	C120PC
size III	C125AC	C125CC	C125EC	C125GC	C125JC	C125LC	C125NC

440V Range (preferred types)

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{1}$	$\mathbf{1 , 5}$	$\mathbf{2}$	$\mathbf{2 , 5}$	$\mathbf{3}$	$\mathbf{3 , 5}$	$\mathbf{4}$
L max (in mm)	50	71	86	99	109	124	148
Size	Size I (cross section $26 \times 43 \mathrm{~mm})$ Style designations $C 120 A C-C 120 C C$						

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 0}$
L max (in mm)	99	109	71	86	99	124	148
Size	Size II C120BC-C120DC- C120FC-C120HC	Size III (cr. sect. $57 \times 75 \mathrm{~mm}$) Style des. C125AC-C125CC-C125EC-CZ25GC					

Composition of the type number: a capacitor $3 \mu \mathrm{~F} \pm 10 \%, 440 \mathrm{~V}$, cross section $26 \pm 43 \mathrm{~mm}$ and designed according to fig. 1: C120AC/A3M

PAPER CAPACITORS FOR ALTERNATING CURRENT

500 V BOX TYPE - C120/C124/C125 SERIES

Dimensions (mm)

Fig. 1

Style designation

	fig. 1	fig. 2	fig.3	fig.4	fig. 5	fig.6	fig. 7
size I	C120AD	C120CD	C120ED	C120GD	C120JD	C120LD	C120ND
size II	C120BD	C120DD	C120FD	C120HD	C120KD	C120MD	C120PD
size III	C125AD	C125CD	C125ED	C125GD	C125JD	C125LD	C125ND

500V Range (preferred types)

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{0 , 7 5}$	$\mathbf{1}$	$\mathbf{1 , 5}$	$\mathbf{2}$	$\mathbf{2 , 5}$	$\mathbf{3}$	$\mathbf{3 , 5}$
\mathbf{L} max (in mm)	50	57	71	86	109	124	148

Size
Size I (cross section $26 \times 43 \mathrm{~mm}$)
Style designations C120AD-C120CD-C120ED-C120GD

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	15
L max (in mm)	99	109	124	86	109	124	148
Size	Size II $(38 \times 55 \mathrm{~mm})$ C120BD-C120DD- C120FD-C120HD	Size III $(57 \times 75 \mathrm{~mm})$ C125AD-C125CD- C125ED-C125GD					

Composition of the type number: a capacitor $3 \mu \mathrm{~F} \pm 10 \%, 500 \mathrm{~V}$, cross section $26 \times 43 \mathrm{~mm}$ and designed according to fig. 1: C120AD/A3M

PAPER CAPACITORS FOR ALTERNATING CURRENT

Fig. 4

Fig. 6

Fig. 7

Style designation

	fig. 1	fig.2	fig. 3	fig.4	fig. 5	fig.6	fig. 7
size I	C120AE	C120CE	C120EE	C120GE	C120JE	C120LE	C120NE
size II	C120BE	C120DE	C120FE	C120HE	C120KE	C120ME	C120PE
size III	C125AE	C125CE	C125EE	C125GE	C125JE	C125LE	C125NE

660V Range (preferred types)

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{0 , 5}$	$\mathbf{0 , 7 5}$	$\mathbf{1}$	$\mathbf{1 , 5}$	$\mathbf{2}$
L max (in mm)	57	71	86	124	148

	Size I (cross section $26 \times 43 \mathrm{~mm}$) Style designations C120AE-C120CE- C120EE-C120GE

Capacitance in $\mu \mathrm{F} \pm 10 \%$	$\mathbf{2 , 5}$	$\mathbf{3}$	$\mathbf{3 , 5}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{8}$
L max (in mm)	99	109	124	86	99	109	148
Size	Size II $(38 \times 55 \mathrm{~mm})$ C120BE-C120DE- C120FE-C120HE	Size III $(57 \times 75 \mathrm{~mm})$ C125AE-C125CE- C125EE-C125GE					

Composition of the type number: a capacitor $1 \mu \mathrm{~F} \pm 10 \%, 660 \mathrm{~V}$, cross section $26 \times 43 \mathrm{~mm}$ and designed according to fig. 1: C120AE/A1M

PAPER CAPACITORS FOR ALTERNATING CURRENT

SPECIAL TYPE - C124ZZ SERIES

These capacitors are specially designed for power-factor correction of gas-discharge lamps for public lighting. They are painted grey.

max. capacitance $(\mu \mathrm{F})$	type number		$H^{1}(\mathrm{~mm})$
8	fig. 1	fig. 2	
10	$\mathrm{C} 124 \mathrm{ZZ} / 80$	$\mathrm{C} 124 \mathrm{ZZ} / 81$	57
13	$/ 100$	$/ 101$	71
15	$/ 130$	$/ 131$	86
18	$/ 150$	$/ 151$	99
20	$/ 180$	$/ 181$	109
25	$/ 200$	$/ 201$	124

[^21]
PAPER CAPACITORS FOR ALTERNATING CURRENT

C126 SERIES - TYPE FOR POWER-FACTOR CORRECTION

These capacitors are used for raising the power factor of alternatingcurrent installations by neutralising or reducing the wattless current originating from inductive loads. Unfavourable power factors arise mainly from underloaded asynchronous motors, transformers (welding apparatus), induction furnaces, and so forth.

Composition of the type number $\mathbf{C 1 2 6}$
single-phase $A \longleftrightarrow \longrightarrow$ type number suffix three-phase B
working voltage
$A=220 \mathrm{~V}$
$\mathrm{B}=380 \mathrm{~V}$
$\mathrm{C}=440 \mathrm{~V}$
$\mathrm{D}=500 \mathrm{~V}$

PAPER CAPACITORS FOR ALTERNATING CURRENT

TYPE FOR POWER-FACTOR CORRECTION - C126 SERIES

nominal working voltage (V)	wattless power (kVAr)	capacitance		current I_{n}		dimensions (mm)		type number suffix
		single phase (1 FF)	threephase ${ }^{1}$ (μF)	single phase (A)	threephase (A)	L	H	
220/230	$\begin{aligned} & 6 / 6.5 \\ & 9 / 10 \\ & 12 / 13 \\ & 15 / 16.5 \end{aligned}$	$\begin{aligned} & 396 \\ & 594 \\ & 792 \\ & 990 \end{aligned}$	$\begin{aligned} & 198 \\ & 297 \\ & 391 \\ & 495 \end{aligned}$	$\begin{aligned} & 27 / 29 \\ & 41 / 43 \\ & 55 / 57 \\ & 68 / 72 \end{aligned}$	$\begin{aligned} & 16 / 16 \\ & 24 / 25 \\ & 31 / 33 \\ & 39 / 41 \end{aligned}$	$\begin{aligned} & 175 \\ & 333 \\ & 333 \\ & 333 \end{aligned}$	$\begin{aligned} & 558 \\ & 483 \\ & 558 \\ & 708 \end{aligned}$	$\begin{aligned} & \mathrm{H} 6 \\ & \mathrm{H} 9 \\ & \mathrm{H} 12 \\ & \mathrm{H} 15 \end{aligned}$
380/400	$\begin{array}{r} 10 / 11 \\ 13.3 / 15 \\ 20 / 22 \\ 26.7 / 30 \\ 33.3 / 37 \end{array}$	$\begin{aligned} & 220 \\ & 294 \\ & 440 \\ & 585 \\ & 735 \end{aligned}$	$\begin{aligned} & 110 \\ & 147 \\ & 220 \\ & 293 \\ & 368 \end{aligned}$	$\begin{aligned} & 26 / 28 \\ & 35 / 37 \\ & 53 / 56 \\ & 70 / 74 \\ & 88 / 90 \end{aligned}$	$\begin{aligned} & 15 / 16 \\ & 20 / 22 \\ & 30 / 32 \\ & 41 / 43 \\ & 51 / 53 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 333 \\ & 333 \\ & 333 \end{aligned}$	$\begin{aligned} & 483 \\ & 558 \\ & 483 \\ & 558 \\ & 708 \end{aligned}$	$\begin{aligned} & \mathrm{H} 10 \\ & \mathrm{H} 13.3 \\ & \mathrm{H} 20 \\ & \mathrm{H} 26.7 \\ & \mathrm{H} 33.3 \end{aligned}$
$440 / 460$	$\begin{array}{r} 10 / 11 \\ 13.3 / 15 \\ 20 / 22 \\ 26.7 / 30 \\ 33.3 / 37 \end{array}$	$\begin{aligned} & 165 \\ & 220 \\ & 330 \\ & 440 \\ & 550 \end{aligned}$	$\begin{gathered} 83.5 \\ 110 \\ 115 \\ 220 \\ 275 \end{gathered}$	$\begin{aligned} & 23 / 24 \\ & 30 / 33 \\ & 45 / 48 \\ & 61 / 65 \\ & 76 / 80 \end{aligned}$	$\begin{aligned} & 13 / 14 \\ & 17 / 19 \\ & 26 / 28 \\ & 35 / 38 \\ & 44 / 46 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 333 \\ & 333 \\ & 333 \end{aligned}$	$\begin{aligned} & 483 \\ & 558 \\ & 483 \\ & 558 \\ & 708 \end{aligned}$	$\begin{aligned} & \mathrm{H} 10 \\ & \mathrm{H} 13.3 \\ & \mathrm{H} 20 \\ & \mathrm{H} 26.7 \\ & \mathrm{H} 33.3 \end{aligned}$
.500/525	$\begin{array}{r} 10 / 11 \\ 13.3 / 15 \\ 20 / 22 \\ 26.7 / 30 \\ 33.3 / 37 \end{array}$	$\begin{aligned} & 127.5 \\ & 170 \\ & 255 \\ & 340 \\ & 425 \end{aligned}$	$\begin{array}{r} 64 \\ 85 \\ 128 \\ 170 \\ 213 \end{array}$	$\begin{aligned} & 20 / 21 \\ & 27 / 29 \\ & 40 / 42 \\ & 53 / 57 \\ & 67 / 70 \end{aligned}$	$\begin{aligned} & 12 / 12 \\ & 15 / 16 \\ & 23 / 24 \\ & 31 / 33 \\ & 38 / 41 \end{aligned}$	$\begin{aligned} & 175 \\ & 175 \\ & 333 \\ & 333 \\ & 333 \end{aligned}$	$\begin{aligned} & 483 \\ & 558 \\ & 483 \\ & 558 \\ & 708 \end{aligned}$	$\begin{aligned} & \mathrm{H} 10 \\ & \mathrm{H} 13.3 \\ & \mathrm{H} 20 \\ & \mathrm{H} 26.7 \\ & \mathrm{H} 33.3 \end{aligned}$

[^22]
C96

These mica capacitors are especially recommended for communications equipment, measuring instruments, military devices, etc. They can be mounted in the wiring of the apparatus and, owing to their insulated body and their flat shape, be placed close together or against a metal plate.

orking temperature range	$-40 /+85^{\circ} \mathrm{C}$
temperature coefficient of the capacitance	$(0$ to +60$) \times 10^{-6} \mathrm{pF}$ per pF and
working voltage .	$500 \mathrm{~V}_{\text {dc }}$ ($\mathrm{per}^{\circ} \mathrm{C}$
maximum capacitance drift during life ... for $\mathrm{C}>100 \mathrm{pF}$	$\begin{aligned} & \pm 1 \% \\ & \pm 1 \mathrm{pF} \end{aligned}$
test voltage during 1 minute	$1350 \mathrm{~V}_{\text {dc }}$
insulation resistance at $20^{\circ} \mathrm{C}$	100000 MS
losses (tan δ): parallel damping. . . . for C $<40 \mathrm{pF}$	$\geqslant 4 \mathrm{M} \Omega$
at $1 \mathrm{Mc} / \mathrm{s}$. for $\mathrm{C}=40-1000 \mathrm{pF}$	$\leqslant 10 \times 10^{-4}$
at $100 \mathrm{kc} / \mathrm{s}$. for $\mathrm{C}>1000 \mathrm{pF}$	$\leqslant 7 \times 10^{-4}$
climatic group number	45/085/21 (IEC)

Composition of the type number $82057 . / \cdots$ capacitance code capacitance tolerance $\longrightarrow \longrightarrow$

$$
\begin{aligned}
& A= \pm 10 \%^{1} \text { for } C \geqslant 22 \mathrm{pF} \\
& \mathrm{~B}= \pm 5 \% \text { for } C \geqslant 93 \mathrm{pF} \\
& C= \pm 2 \% \text { for } C \geqslant 100 \mathrm{pF} \\
& D= \pm 1 \% \text { for } C \geqslant 100 \mathrm{pF} \\
& M= \pm 1 \mathrm{pF} \text { for } C \leqslant 91 \mathrm{pF}
\end{aligned}
$$

${ }^{1}$ In the tolerance class $\pm 10 \%$ the capacitance values are scaled according to what is known as the E12 series (12 values between 1 and 10 progressing in steps of approximately the same percentage), in the ocher classes they are scaled according to the E24 series (24 values between 1 and 10) but E12 values are preferred types.

Example: The type number of a 1800 pF capacitor, tolerance $\pm 5 \%$ is $82057 \mathrm{~B} / 1 \mathrm{~K} 8$.

82057 series - MICA CAPACITORS

MOULDED MIDGET TYPE

capacitance value (pF)	capacitance code						
		10	10E	100	100E	1000	1 K
		11	11E	110	110 E	1100	1K1
		12	12E	120	120 E	1200	1K2
		13	13E	130	130E	1300	1K3
		15	15E	150	150E	1500	1K5
		16	16E	160	160E	1600	1 K 6
		18	18E	180	180E	1800	1K8
		20	20E	200	200E	2000	2K
		22	22E	220	220E	2200	2K2
		24	24E	240	240 E	2400	2K4
		27	27 E	270	270E	2700	2K7
		30	30E	300	300 E		
		33	33E	330	330 E		
		36	36E	360	360 E		
		39	39E	390	390E		
		43	43E	430	430 E		
		47	47E	470	470E		
		51	51E	510	510 E		
5.6	5E6	56	56E	560	560 E		
6.2	6E2	62	62E	620	620 E		
6.8	6 E 8	68	68E	680	680 E		
7.5	7E5	75	75E	750	750 E		
8.2	8E2	82	82E	820	820 E		
9.1	9 E 1	91	91E	910	910 E		

These mica capacitors are designed with the aim of obtaining optimum performance as regards accuracy, stability and low losses. Therefore, they are suitable for applications which impose the highest requirements in this respect, such as e.g. measuring, control and communications equipment. The programme contains six series of capacitors.

	for $\mathrm{C} \geqslant 12000 \mathrm{pF}$	$\leqslant 50 \times 10^{-6} \mathrm{pF}$ per pF and per ${ }^{\circ} \mathrm{C}$
maximum capacitance drift during life	for C <91 pF	$\pm 0.5 \mathrm{pF}$
	for $C=100-1000 \mathrm{pF}$	$\pm 0.4 \%$
	for $C=1100-6800 \mathrm{pF}$	$\pm 0.2 \%$
	for $\mathrm{C} \geqslant 6800 \mathrm{pF}$	$\pm 0.15 \%$
test voltage during 1 minute		$3 \times$ working voltage
insulation resistance at $20^{\circ} \mathrm{C}$. $\geqslant 50000 \mathrm{M} \Omega$		
losses (tan δ) : parallel dampingat $1 \mathrm{mc} / \mathrm{s} \ldots$.	for $\mathrm{C}<50 \mathrm{pF}$	$\geqslant 3 \mathrm{M} \Omega$
	. for $C=50-200 \mathrm{pF}$	$<10 \times 10^{-4}$
	for $C=200-400 \mathrm{pF}$	$<7.5 \times 10^{-4}$
	for $\mathrm{C}=400-1000 \mathrm{pF}$	$<4 \times 10^{-4}$
at $100 \mathrm{kc} / \mathrm{s}$	for $\mathrm{C}>1000 \mathrm{pF}$	$<5 \times 10^{-4}$
climatic group number	- . .	40/085/21 (IEC)

Composition of the type numbers C399AA/. ... $5.1-1800 \mathrm{pF}\left(500 \mathrm{~V}_{\mathrm{dc}}\right)$

Example: The type number of a $10000 \mathrm{pF} / 500 \mathrm{~V}_{\mathrm{dc}}$ capacitor, tolerance $\pm 5 \%$, is $82059 \mathrm{~B} / 10 \mathrm{~K}$.

MOULDED PRECISION TYPE

Series C399AA 5.1-1 800 pF 500 V

Series C399AB 2000-2700 pF 250 V

Series $\mathrm{B8} 02002$ 2000-6800 pF 500 V

Series 82058
7500-12000 pF 250 V

Serjes 82059 7500-100000 pF 500 V

MOULDED PRECISION TYPE

capaci- tance value (pf)	capacitance code	capaci- tance value (pf)	capacitance code	capaci- tance value (pf)	capacitance code	capaci- tance value (pf)	capacitance code	capacitance value (pf)	capaci- tance code	capaci- tance value (pf)	capacitance code
		10	10E	100	100E	1000	1 K	10000	10K	0.10	100K
		11	11E	110	110E	1100	1K1	11000	11K	0.11	110K
		12	12E	120	120E	1200	1 K 2	12000	12K	0.12	120K
		13	13E	130	130 E	1300	1K3	13000	13K	0.13	130K
		15	15E	150	150E	1500	1 K 5	15000	15K	0.15	150K
		16	16E	160	160E	1600	1K6	16000	16K	0.16	160K
		18	18E	180	180E	1800	1K8	18000	18K	0.18	180K
		20	20E	200	200E	2000	2K	20000	20K	0.20	200K
		22	22E	220	220 E	2200	2K2	22000	22K	0.22	220K
		24	24 E	240	240E	2400	2K4	24000	24 K	0.24	240K
		27	27E	270	270E	2700	2K7	27000	27K	0.27	270K
		30	30 E	300	300 E	3000	3 K	30000	30K	0.30	300 K
		33	33E	330	330 E	3300	3K3	33000	33 K		
		36	36E	360	360 E	3600	3K6	36000	36 K		
		39	39E	390	390 E	3900	3K9	39000	39K		
		43	43E	430	430 E	4300	4K3	43000	43K		
		47	47E	470	470 E	4700	4K7	47000	47K		
5.1	5E1	51	51 E	510	510 E	5100	5K1	51000	51K		
5.6	5E6	56	56E	560	560 E	5600	5K6	61000	61 K		
6.2	6E2	62	62E	620	620 E	6200	6K2	62000	62K		
6.8	6E8	68	68E	680	680E	6800	6K8	68000	68K		
7.5	7E5	75	75E	750	750E	7500	7K5	75000	75K		
8.2	8E2	82	82E	820	820E	8200	8K2	82000	82K		
9.1	9 E 1	91	91E	910	910 E	9100	9K1	91000	91 K		

B8 02000 series - MICA CAPACITORS

BALANCING TELEPHONE CABLE TYPE

These capacitors have been specially designed for balancing the pairs of loaded relephone cables in order to reduce the cross-talk to a value below the permissible limit.
The capacitors are supplied either single, double or quadruple.
Single balancing capacitors consist of a midget mica capacitor which has been moulded in a reddish brown thermo-setting synthetic resin.
The capacitors are provided with two connecting wires of tinned copper ($0.5 \mathrm{~mm} \varnothing$) having a length of about 180 mm which are, except for the last 30 mm , insulated with an uninflammable plastic (0.9 $\mathrm{mm} \varnothing$) see fig. 1. One wire (the one connected to the outer electrodes) is red, the other yellow. Double balancing capacitors (see fig. 2) are composed of two single units arranged according to fig. 3. Quadruple balancing capacitors (see fig. 4) are composed of four single units in a bridge arrangement according to fig. 5.
This application imposes the highest requirements regarding precision, stability, insulation resistance and resistance to moisture.

Composition of the type number B8 $02000 . / \ldots$

$$
\begin{aligned}
& A=10 \% \\
& B=5 \%
\end{aligned}
$$

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

B8 02000 series - MICA CAPACITORS
BALANCING TELEPHONE CABLE TYPE

capacitance (pF)	capacitance code		
	single version	double version	quadruple version
10	10 E	-	-
20	20E	$2 \times 20 \mathrm{E}$	-
30	30E	$2 \times 30 \mathrm{E}$	$4 \times 30 \mathrm{E}$
40	40E	$2 \times 40 \mathrm{E}$	$4 \times 40 \mathrm{E}$
50	50E	$2 \times 50 \mathrm{E}$	$4 \times 50 \mathrm{E}$
60	60E	$2 \times 60 \mathrm{E}$	$4 \times 60 \mathrm{E}$
70	70E	$2 \times 70 \mathrm{E}$	$4 \times 70 \mathrm{E}$
80	80E	$2 \times 80 \mathrm{E}$	$4 \times 80 \mathrm{E}$
90	90E	$2 \times 90 \mathrm{E}$	$4 \times 90 \mathrm{E}$
100	100E	$2 \times 100 \mathrm{E}$	$4 \times 100 \mathrm{E}$
120	120E	$2 \times 120 \mathrm{E}$	$4 \times 120 \mathrm{E}$
140	140E	$2 \times 140 \mathrm{E}$	$4 \times 140 \mathrm{E}$
160	160E	$2 \times 160 \mathrm{E}$	$4 \times 160 \mathrm{E}$
180	180E	$2 \times 180 \mathrm{E}$	$4 \times 180 \mathrm{E}$
200	200E	$2 \times 200 \mathrm{E}$	$4 \times 200 \mathrm{E}$
250	250 E	$2 \times 250 \mathrm{E}$	$4 \times 250 \mathrm{E}$
300	300 E	$2 \times 300 \mathrm{E}$	$4 \times 300 \mathrm{E}$
350	350 E	$2 \times 350 \mathrm{E}$	$4 \times 350 \mathrm{E}$
400	400 E	$2 \times 400 \mathrm{E}$	$4 \times 400 \mathrm{E}$
450	450 E	$2 \times 450 \mathrm{E}$	$4 \times 450 \mathrm{E}$
500	500 E	$2 \times 500 \mathrm{E}$	$4 \times 500 \mathrm{E}$
600	600 E	$2 \times 600 \mathrm{E}$	$4 \times 600 \mathrm{E}$
700	700E	$2 \times 700 \mathrm{E}$	$4 \times 700 \mathrm{E}$
800	800E	$2 \times 800 \mathrm{E}$	$4 \times 800 \mathrm{E}$
900	900E	$2 \times 900 \mathrm{E}$	$4 \times 900 \mathrm{E}$
1000	1 K	$2 \times 1 \mathrm{~K}$	$4 \times 1 \mathrm{~K}$
1100	1 K 1	$2 \times 1 \mathrm{~K} 1$	$4 \times 1 \mathrm{~K} 1$
1200	1K2	$2 \times 1 \mathrm{~K} 2$	$4 \times 1 \mathrm{~K} 2$
1300	1K3	$2 \times 1 \mathrm{~K} 3$	$4 \times 1 \mathrm{~K} 3$
1400	1 K 4	$2 \times 1 \mathrm{~K} 4$	$4 \times 1 \mathrm{~K} 4$
1500	1 K 5	$2 \times 1 \mathrm{~K} 5$	$4 \times 1 \mathrm{~K} 5$
1600	1K6	$2 \times 1 \mathrm{~K} 6$	$4 \times 1 \mathrm{~K} 6$
1700	1 K 7	$2 \times 1 \mathrm{~K} 7$	$4 \times 1 \mathrm{~K} 7$
1800	1 K 8	$2 \times 1 \mathrm{~K} 8$	$4 \times 1 \mathrm{K8}$
1900	1 K 9	$2 \times 1 \mathrm{~K} 9$	$4 \times 1 \mathrm{~K} 9$
2000	2K	$2 \times 2 \mathrm{~K}$	$4 \times 2 \mathrm{~K}$
2100	2K1	$2 \times 2 \mathrm{~K} 1$	$4 \times 2 \mathrm{~K} 1$
2200	2K2	$2 \times 2 \mathrm{~K} 2$	$4 \times 2 \mathrm{~K} 2$
2300	2K3	$2 \times 2 \mathrm{~K} 3$	$4 \times 2 \mathrm{~K} 3$
2400	2K4	$2 \times 2 \mathrm{~K} 4$	$4 \times 2 \mathrm{~K} 4$
2500	2K5	$2 \times 2 \mathrm{~K} 5$	$4 \times 2 \mathrm{~K} 5$
2600	2K6	$2 \times 2 \mathrm{~K} 6$	$4 \times 2 \mathrm{~K} 6$
2700	2K7	$2 \times 2 \mathrm{~K} 7$	$4 \times 2 \mathrm{~K} 7$

These capacitors are made as an extension of our range of cable-balancing mica capacitors B802000. They are polystyrene capacitors mounted in cylindrical aluminium casings and sealed with a synthetic resin. A double and a quadruple version is available, arranged as shown in fig. 1 and fig. 2 respectively.

Composition of the type number B8 00612.
capacitance tolerance
 $\xrightarrow{\because(}$ capacitance code

$$
\begin{aligned}
& \leqslant 10000 \mathrm{pF}: C= \pm 2 \% \\
& >10000 \mathrm{pF}: \mathrm{D}= \pm 1 \%
\end{aligned}
$$

Example: The type number of a 13000 pF capacitor according to Fig. 2, tolerance 1%, is B800612 D/4 $\times 13 \mathrm{~K}$

B8 00612 series - POLYSTYRENE CAPACITORS

BALANCING TELEPHONE CABLE TYPE

capacitance	double version (fig. 1)		quadruple version (fig. 2)	
	capacitance code	dimensions $D \times L(m m)$	capacitance code	$\begin{aligned} & \text { dimensions } \\ & D \times L(\mathrm{~mm}) \end{aligned}$
3000 pF	$2 \times 3 \mathrm{~K}$	30×27	$4 \times 3 \mathrm{~K}$	35×27
4000	$2 \times 4 \mathrm{~K}$		$4 \times 4 \mathrm{~K}$	
5000	$2 \times 5 \mathrm{~K}$		$4 \times 5 \mathrm{~K}$	
6000	$2 \times 6 \mathrm{~K}$	30×37	$4 \times 6 \mathrm{~K}$	35×27
7000	$2 \times 7 \mathrm{~K}$		$4 \times 7 \mathrm{~K}$	
8000	$2 \times 8 \mathrm{~K}$		$4 \times 8 \mathrm{~K}$	
9000	$2 \times 9 \mathrm{~K}$		$4 \times 9 \mathrm{~K}$	
$0.010 \mu \mathrm{~F}$	$2 \times 10 \mathrm{~K}$		$4 \times 10 \mathrm{~K}$	
0.011	$2 \times 11 \mathrm{~K}$		$4 \times 11 \mathrm{~K}$	
0.012	$2 \times 12 \mathrm{~K}$		$4 \times 12 \mathrm{~K}$	
0.013	$2 \times 13 \mathrm{~K}$		$4 \times 13 \mathrm{~K}$	
0.014	$2 \times 14 \mathrm{~K}$		$4 \times 14 \mathrm{~K}$	
0.015	$2 \times 15 \mathrm{~K}$		$4 \times 15 K$	
0.016	$2 \times 16 \mathrm{~K}$		$4 \times 16 \mathrm{~K}$	
0.017	$2 \times 17 \mathrm{~K}$	35×37	$4 \times 17 \mathrm{~K}$	35×70
0.018	$2 \times 18 \mathrm{~K}$		$4 \times 18 \mathrm{~K}$	
0.019	$2 \times 19 \mathrm{~K}$		$4 \times 19 \mathrm{~K}$	
0.020	$2 \times 20 \mathrm{~K}$		$4 \times 20 \mathrm{~K}$	
0.021	$2 \times 21 \mathrm{~K}$		$4 \times 21 \mathrm{~K}$	
0.022	$2 \times 22 \mathrm{~K}$		$4 \times 22 \mathrm{~K}$	
0.023	$2 \times 23 \mathrm{~K}$		$4 \times 23 \mathrm{~K}$	
0.024	$2 \times 24 \mathrm{~K}$		$4 \times 24 \mathrm{~K}$	
0.025	$2 \times 25 \mathrm{~K}$		$4 \times 25 \mathrm{~K}$	
0.026	$2 \times 26 \mathrm{~K}$		$4 \times 26 \mathrm{~K}$	
0.027	$2 \times 27 \mathrm{~K}$		$4 \times 27 \mathrm{~K}$	
0.028	$2 \times 28 \mathrm{~K}$		$4 \times 28 \mathrm{~K}$	
0.029	$2 \times 29 \mathrm{~K}$		$4 \times 29 \mathrm{~K}$	
0.030	$2 \times 30 \mathrm{~K}$		$4 \times 30 \mathrm{~K}$	
0.031	$2 \times 31 \mathrm{~K}$		$4 \times 31 \mathrm{~K}$	
0.032	$2 \times 32 \mathrm{~K}$		$4 \times 32 \mathrm{~K}$	

POLYSTYRENE CAPACITORS - C295 series

TUBULAR MOULDED TYPE

These capacitors are very suitable for use in tuned circuits and filters of electronic equipment of all kinds, especially of carrier telephony equipment where high requirements are imposed as regards precision, stability and low losses at high frequencies. The fairly small negative temperature coefficient is advantageous for most applications.

They can be incorporated in the wiring of the equipment and are also suitable for vertical mounting on printed-wiring boards, the length of connection leads always being sufficient.

Composition of the type number $\mathbf{C} 295 \mathrm{~A}$.

Example: The type number of a $6200 \mathrm{pF} / 125 \mathrm{~V}$ capacitor, tolerance 5%, is C295AA/B6K2.

C295 series - POLYSTYRENE CAPACITORS

TUBULAR MOULDED TYPE

The table lists the capacitance values according to the E24 range. For $\pm 1 \%$ and $\pm 2 \%$ tolerance intermediate values can be supplied on request. The dimensions are identical to those of the next higher values given in the table.
C108

POLYSTYRENE CAPACITORS - C295 series

CHARACTERISTICS

Fig. 3 Resonance frequency versus capacitance at different total wire lengths.

Fig. 1 Capacitance versus temperature

Fig. 2 Losses at $1 \mathrm{kc} / \mathrm{s}$ versus temperature

Fig. 4 Capacitance versus frequency

Fig. 5 Losses versus frequency

C299 series - POLYSTYRENE CAPACITORS

BOX TYPE

These box-type capacitors are extremely suitable as capacitance standard in measuring equipment and for RC network.
Inside the box the pack is absolutely proof against atmospheric influences, so that the excellent properties are maintained under the most adverse climatic conditions.

```
tolerance on capacitance
1%
working temperature range
-40/+85 呂
temperature coefficient of the capacitance
(-100 to -150) \times10-6 pF per pF and per }\mp@subsup{}{}{\circ}\textrm{C
maximum capacitance drift during life
\pm0.5%
test voltage during 1 minute:
```

(a) across the terminals
(b) between the terminals
insulation resistance at $20^{\circ} \mathrm{C}$. . . for $\mathrm{C} \leqslant 0.33 \mu \mathrm{~F}$ for $C>0.33 \mu \mathrm{~F} \quad \mathrm{RC} \geqslant 250000 \mathrm{sec}$
losses $(\tan \delta)$ at $1 \mathrm{kc} / \mathrm{s}$ $\leqslant 5 \times 10^{-4}$
climatic group number

40/085/56 (IEC)

Composition of the type number C299A./D..

working voltage

$$
\begin{aligned}
& \mathrm{A}=125 \mathrm{~V}_{\mathrm{dc}} \\
& \mathrm{~B}=350 \mathrm{~V}_{\mathrm{dc}} \\
& \mathrm{C}=500 \mathrm{~V}_{\mathrm{dc}}
\end{aligned}
$$

Example: The type number of a $33000 \mu \mathrm{~F} / 350 \mathrm{~V}$ capacitor, is $\mathrm{C} 299 \mathrm{AB} / \mathrm{D} 33 \mathrm{~K}$

capacitance $(\mu \mathrm{F})$	capacitance code	dimensions (A) in mm		
	$125 V_{\text {de }}$	$350 \mathrm{~V}_{\mathrm{dc}}$	$500 \mathrm{~V}_{\text {de }}$	
0.022	22 K			20
0.033	33 K			20
0.047	47 K			20
0.068	68 K			20
0.10	100 K			20
0.15	150 K	20	25	25
0.22	220 K	20	35	35
0.33	330 K	20	40	50
0.47	470 K	25	50	60
0.68	680 K	35	75	90
1	1 M	50	105	120
1.5	1 M 5	75	120	
2.2	2 M 2	105		
3.3	3 M 3	120		

Intermediate capacitance values with a tolerance of 1% are available on request

The capacitors can be used in any position.
If desired, use can be made of mounting brackets as
 illustrated in the figure; two if A is smaller than 60 mm , and four if A is 60 mm cr larger.
The type number of the mounting brackets is $88480 / 00$. A wire of max. $2.5 \mathrm{sq} . \mathrm{mm}$ can be connected to each soldering tag.

CERAMIC CAPACITORS

APPLICATION

construction	class 1				class 11			
	for tuning and other applications where low losses and a linear temperature dependence are required				for all coupling and decoupling purposes			
	type number	capacitance range	working voltage	page	type number	capacitance range	working voltage	page
	C304	0.8-820 pF	$500 \mathrm{~V}_{\text {dc }}$	$\begin{aligned} & \text { C114 } \\ & \text { C115 } \\ & \text { C116 } \end{aligned}$	$\begin{aligned} & \text { C301 } \\ & \text { C318 } \end{aligned}$	$\begin{array}{r} 680-22000 \mathrm{pF} \\ 1000-10000 \mathrm{pF} \end{array}$	$\begin{aligned} & 500 \mathrm{~V}_{\mathrm{dc}} \\ & 500 \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & \mathrm{C} 124 \\ & \mathrm{C} 125 \end{aligned}$
	C306	0.5-47 pF	$500 \mathrm{~V}_{\mathrm{de}}$	$\begin{aligned} & \text { C117 } \\ & \text { C118 } \end{aligned}$				
4					$\begin{aligned} & \text { C322 } \\ & \text { C325 } \end{aligned}$	$\begin{array}{r} 1.5-10000 \mathrm{pF} \\ 2200-10000 \mathrm{pF} \end{array}$	$\begin{aligned} & 500 \mathrm{~V}_{\mathrm{dc}} \\ & 125 \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & \mathrm{C} 126 \\ & \mathrm{C} 127 \end{aligned}$
1	C333	$1.0-150 \mathrm{pF}$	$40 \mathrm{~V}_{\text {dc }}$	$\begin{aligned} & \mathrm{C} 122 \\ & \mathrm{C} 123 \end{aligned}$	$\begin{aligned} & \text { C330 } \\ & \text { C331 } \\ & \text { C332 } \end{aligned}$	$\begin{gathered} 22000-100000 \mathrm{pF} \\ 1000-10000 \mathrm{pF} \\ 180-1800 \mathrm{pF} \end{gathered}$	$\begin{aligned} & 6 V_{\mathrm{dc}} \\ & 30 \mathrm{~V}_{\mathrm{dc}} \\ & 40 \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & \text { C130 } \\ & \text { C131 } \\ & \text { C128 } \\ & \text { C129 } \end{aligned}$
	C309BG	2.5- 56 pF	$350 \mathrm{~V}_{\mathrm{dc}}$	$\begin{aligned} & \mathrm{C} 134 \\ & \text { C135 } \\ & \text { C136 } \end{aligned}$	$\begin{aligned} & \text { C309BH } \\ & \text { C309UA } \end{aligned}$	$\begin{array}{rr} 68-2200 & \mathrm{pF} \\ 2.5-4700 & \mathrm{pF} \end{array}$	$\begin{aligned} & 350 V_{\mathrm{dc}} \\ & 350 \mathrm{~V}_{\mathrm{dc}} \end{aligned}$	$\begin{aligned} & \mathrm{C} 134 \\ & \text { C135 } \\ & \text { C136 } \end{aligned}$

	special types					
construction	for special applications e.g. safety and filter capacitors					
	type number	capitance range	working voltage	page		
		C321 (safety)	$10-560 \mathrm{pF}$	$700 \mathrm{~V}_{\mathrm{dc}}$		C 132
:---:						
C 133						

CERAMIC CAPACITORS

COLOUR CODE

	temperature coefficient	first digit	second digit	multiplier for the capacitance	tolerance on capacitance	
					$C_{\mathrm{n}} \leq 10 p F$	$C_{\mathrm{n}} \underset{(\%)}{\geq 10 p F}$
red/violet	P100					
black	NPO		0	1		± 20
brown		1	1	10	± 0.1	± 1
red		2	2	10^{2}	± 0.25	± 2
orange	N150	3	3	10^{3}		
yellow		4	4	10^{4}		
green		5	5		± 0.5	± 5
blue		6	6			
violet	N750	7	7			
grey		8	8	10^{-2}		
white		9	9	10^{-1}	± 1	± 10
	\wedge	A	A	Δ	\pm	Δ

C304 series - CERAMIC CAPACITORS

CLASS IB, TUBULAR TYPE, FOR $500 \mathrm{~V}_{\text {dc }}$

Application

Owing to the use of low-K ceramic material, these capacitors have low losses, a high stability and display a linear temperature dependence of the capacitance. These features render the capacitors ideally suited for application in high frequency equipment, especially in resonant circuits in which advantage can be taken of the linear temperature coefficient to compensate the temperature dependence of the other components.
These capacitors have connecting leads of $0.6 \mathrm{~mm} \varnothing$ with a pitch of a multiple of one tenth of an inch, so that they are suitable for printed wiring circuits.

Construction

The capacitors consist of a ceramic tube, partly metallised on the outside, and - except for the smallest capacitances - internally metallised. A coating of special grey lacquer protects the capacitors against atmospheric influences. The temperature coefficient, the capacitance and the tolerances are indicated by means of a colour code (see page C113). The inner electrode is connected to the lead at the side of the first colour strip (that of the temperature coefficient).

Electrical specification

Unless otherwise specified, all electrical values apply to a temperature of $20+5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of 45% to 75%.

```
maximum working voltage at 85 }\textrm{C . . . . . . . . . . . . 500 V dc
test voltage (during 1 minute) . . . . . . . . . . . . . . 1250 V dc
maximum current (in the case of a.c. loads) . . . . . . . . }500\textrm{mA
insulation resistance at 20}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ and }500\mp@subsup{\textrm{V}}{\textrm{dc}}{\mathrm{ . . . . . . . . > }}10000\textrm{M}
dissipation factor at }1\textrm{Mc}/\textrm{s
measured at a voltage < 3.5 V \ac : .... for C> 10 pF \leq10\times10-4 (average < 5 > 10-4)
    0.01
    C(pF)
permissible working temperature . . . . . . . . . . . . . - -40/+85 }\mp@subsup{}{}{\circ}\textrm{C
climatic group number . . . . . . . . . . . . . . . . . 40/085/21 (IEC)
```

C114

CERAMIC CAPACITORS - C304 series

CLASS IB, TUBULAR TYPE, FOR $500 \mathrm{~V}_{\mathrm{dc}}$

Capacitance and tolerance

The table on next page gives the E12 capacitance series with a tolerance of $0.25 \mathrm{pF}, 0.5 \mathrm{pF}$ and 5%, depending on the capacitance value. On request values appertaining to the E24 series can be supplied, provided acceptable quantities are ordered. This also applies to capacitors with tolerances of 20% of the E6 series, of 10% of the E12 series and with 2% and 1% tolerances for higher capacitance values. Further technical data upon request.

Temperature coefficients

	temperature coefficient	tolerance	type number prefix
NP0	$0 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	for $\mathrm{C}_{\mathrm{n}} \leqq 20 \mathrm{pF}:-40$ to $+120 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}}>20 \mathrm{pF}: \pm 40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 304 \mathrm{~GB} / \ldots$
N 450	$-150 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	for $\mathrm{C}_{\mathrm{n}} \leqq 20 \mathrm{pF}:-40$ to $+60 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}}>20 \mathrm{pF:} \pm 40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 304 \mathrm{GC} / \ldots$

Capacitors with a temperature coefficient according to P100, N033, N075, N220, N330, N470 and N1 500 can be supplied, provided acceptable quantities are ordered.

Composition of the type number C304G./.
 temperature coefficient code
 \longrightarrow type number suffix

Example:

The type number of a 0.8 pF capacitor with a temperature coefficient N 750 and a tolerance of 0.25 pF , is $\mathrm{C} 304 \mathrm{GH} / \mathrm{NE} 8$.

C304 series - CERAMIC CAPACITORS

CLASS IB, TUBULAR TYPE, FOR $500 \mathrm{~V}_{\mathrm{dc}}$

temp. coef.		NPO			N150			N750		
$\begin{aligned} & c a p . \\ & (p F) \end{aligned}$	tolerance	$\begin{gathered} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} p \\ (\mathrm{~mm}) \end{gathered}$	type no. suffix	$\begin{gathered} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} p \\ (m m) \end{gathered}$	type no. suffix	$\begin{gathered} 1 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} p \\ (m m) \end{gathered}$	type no. suffix
0.8	$\pm 0.25 \mathrm{pF}$							12	7.6	GH/NE8
1	"							12	7.6	/N1E
1.2								12	7.6	/N1E2
1.5	"							12	7.6	/N1E5
1.8	,"	12	7.6	GB/N1E8				12	7.6	/N1E8
2.2	"	12	7.6	/N2E2				12	7.6	/N2E2
2.7	$\pm 0.5 \mathrm{pF}$	12	7.6	/L2E7				12	7.6	/L2E7
3.3	,"	12	7.6	/L3E3				12	7.6	/L3E3
3.9	,	12	7.6	/L3E9				12	7.6	/L3E9
4.7	,,	12	7.6	/L4E7				12	7.6	/L4E7
5.6	,	12	7.6	/L5E6	12	7.6	GC/L5E6	12	7.6	/L5E6
6.8	,,	12	7.6	/L6E8	12	7.6	/L6E8	12	7.6	/L6E8
8.2	,"	10	5.1	/L8E2	10	5.1	/L8E2	10	5.1	/L8E2
10	,"	10	5.1	/L10E	10	5.1	/L10E	10	5.1	/L10E
12	$\pm 5 \%$	10	5.1	/B12E	10	5.1	/B12E	10	5.1	/B12E
15	"	10	5.1	/B15E	10	5.1	/B15E	10	5.1	/B15E
18	,	10	5.1	/B18E	10	5.1	/B18E	10	5.1	/B18E
22	",	10	5.1	/B22E	10	5.1	/B22E	10	5.1	/B22E
27	,	12	7.6	/B27E	12	7.6	/B27E	10	5.1	/B27E
33	,"	12	7.6	/B33E	12	7.6	/B33E	10	5.1	/B33E
39	"	12	7.6	/B39E	12	7.6	/B39E	10	5.1	/B39E
47	,,	14	7.6	/B47E	12	7.6	/B47E	10	5.1	/B47E
56	"	14	7.6	/B56E	14	7.6	/B56E	12	7.6	/B56E
68	,,	16	10.2	/B68E	16	10.2	/B68E	12	7.6	/B68E
82	"	18	12.7	/B82E	16	10.2	/B82E	12	7,6	/B82E
100	"	20	12.7	/B100E	18	12.7	/B100E	12	7.6	/B100E
120	"	22	17.7	/B120E	20	12.7	/B120E	14	7.6	/E120E
150	"	26	20.3	/B150E	24	17.7	/B150E	16	10.2	/B150E
180	"	30	30.3	/B180E	26	20.3	/B180E	18	12.7	/B180E
220	"	34	25.4	/B220E	30	20.3	/B220E	20	12.7	/B220E
270	,				36	25.4	/B270E	22	17.7	/E270E
330	"							24	17.7	/B330E
390	"							28	20.3	/B390E
470	"							32	25.4	/B470E
560	,"							38	30.5	/B560E
680	,							44	35.6	/B680E
820	"							52	40.6	/B820E

CERAMIC CAPACITORS - C306 series

CLASS IB, HIGH VOLTAGE DISC TYPE

Application

Owing to the use of low-K ceramic material, these series of disc capacitors have low losses, a high stability and display a linear temperature dependence of the capacitance. These features render the capacitors ideally suited for application in high frequency equipment, especially in resonant circuits in which advantage can be taken of the linear temperature coefficient to compensate the temperature dependence of other components.

Construction

The capacitor consists of a ceramic disc, provided with a silver plating at both sides to which the connecting leads are soldered. In order to avoid lacquer on the leads the capacitor is only partly lacquered, after which the whole is covered with a solderable film which protects the unlacquered part against atmospheric influences.

Electrical specification

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930-1060 mbar and a relative humidity of 45% to 75%.

Maximum working voltage	$500 \mathrm{~V}_{\mathrm{dc}}$
Test voltage (during 1 minute)	$1250 \mathrm{~V}_{\text {de }}$
Maximum permissible current for the 5 mm discs for the 8 mm discs	$\begin{aligned} & 600 \mathrm{~mA} \\ & 1000 \mathrm{~mA} \end{aligned}$
Insulation resistance at $500 \mathrm{~V}_{\mathrm{dc}}$	$>10.000 \mathrm{M} \Omega$
Dissipation factor at $1 \mathrm{Mc} / \mathrm{s}$ (measured at a voltage of $3.5 \mathrm{~V}_{\mathrm{ac}}$)	
for $C \leq 10 \mathrm{pF}$	$\leq \frac{0.01}{C(\mathrm{pF})}$
for $\mathrm{C}>10 \mathrm{pF}$	$\leq 10 \times 10^{-4}$
Permissible working temperature	$-40 /+85^{\circ} \mathrm{C}$
Climatic group number	40/085/21
Capacitance and tolerances	see table

C306 series - CERAMIC CAPACITORS

CLASS IB, HIGH VOLTAGE DISC TYPE

Temperature coefficient

	temperature coefficient	type number prefix
P100	$+100 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 306 \mathrm{SA} / \ldots$
NP0	$0 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 306 \mathrm{SB} / \ldots$
N150	$-150 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 306 \mathrm{SC} / \ldots$
N750	$-750 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\mathrm{C} 306 \mathrm{SH} / \ldots$

Capacitors with temperature coefficients according to N075, N220, N470 and N1500 can be supplied, provided acceptable quantities are ordered.

Composition of the type number C306 S.l...B

temp. coeff.

\square

Example

The type number of a 12 pF capacitor with a temperature coefficient NPO and a colerance of 5%, is C306 SB/B12EB.

temp. coefficient		P100		NPO		N150		N750	
cap. (pF)	tolerance	$\begin{gathered} d \\ (\mathrm{~mm}) \end{gathered}$	type no. suffix	$\left\lvert\, \begin{gathered} d \\ (m \mathrm{~m}) \end{gathered}\right.$	type no. suffix	$\begin{gathered} d \\ (\mathrm{~mm}) \end{gathered}$	type no. suffix	$\begin{gathered} d \\ (m m) \end{gathered}$	type no. suffix
0.5	0.25 pF	5	SA/NE5B						
0.75	0.25 pF	5	/NE75B						
1	0.25 pF	5	/L1EB						
1.2	0.25 pF	5	/L1E2B						
1.5	0.25 pF	5	/L1E5B						
1.8	0.5 pF	5	/L1E8B	5	SB/L1E8B			5	SH/L1E8B
2.2	0.5 pF	5	/L2E2B	5	/L2E2B	5	SC/L2E2B	5	/L2E2B
2.7	0.5 pF	5	/L2E7B	5	/L2E7B	5	/L2E7B	5	/L2E7B
3.3	0.5 pF	5	/L3E3B	5	/L3E3B	5	/L3E3B	5	/L3E3B
3.9	0.5 pF	8	/L3E9B	5	/L3E9B	5	/L3E9B	5	/L3E9B
4.7	0.5 pF	8	/L4E7B	5	/L4E7B	5	/L4E7B	5	/L4E7B
5.6	0.5 pF	8	/L5E6B	5	/L5E6B	5	/L5E6B	5	/L5E6B
6.8	0.5 pF			5	/L6E8B	5	/L6E8B	5	/L6E8B
8.2	0.5 pF			5	/L8E2B	5	/L8E2B	5	/L8E2B
10	0.5 pF			8	/L10EB	5	/L10EB	5	/L10EB
12	5%			8	/B12EB	8	/B12EB	5	/B12EB
15	5%			8	/B15EB	8	/B15EB	5	/B15EB
18	5%					8	/B18EB	5	/B18EB
22	5%							8	/B22EB
27	5%							8	/B27EB
33	5%							8	/B33EB

CLASS IC, MIDGET TUBULAR TYPE

Fig. 1

Fig. 2

Application

These midget-type ceramic capacitors are characterised by their low HF losses, high stability and a very low inductance. Therefore they are widely used in RF tuned circuits. The capacitors have been specially designed for use in small filters such as miniaturized IF transformers, bandpass filters, for radio and television receivers, discriminators, noise limiters, etc.

Construction

The capacitors consist of a tiny ceramic tube, covered internally and externally with a fired-on silver electrode, each electrode being provided with a tinned copper connecting lead. The insulated version is covered with a coating of tan-coloured lacquer which permits these capacitors to be mounted close together or against a metal plate.
The capacitors are colour-coded according to IEC (see page C113), with the exception of those with the values of $3.9-8.2 \mathrm{pF}$ and 39 pF for the non-insulated version, which are marked in black script. The connecting leads can withstand a strain of at least 450 grammes.

Electrical Specification

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of 45% to 75%.

C302 series - CERAMIC CAPACITORS

CLASS IC, MIDGET TUBULAR TYPE

$$
\begin{aligned}
& \text { Max. working voltage at a frequency of } 100 \mathrm{kc} / \mathrm{s} \text {. } 70 \mathrm{~V}_{\mathrm{ac}} \\
& \text { Test voltage during } 1 \text { second } 300 \mathrm{~V}_{\mathrm{dc}} \\
& \text { Test voltage against coating of insulated type (1 second) . } 300 \mathrm{~V}_{\mathrm{dc}} \\
& \text { Insulation resistance measured within } 1 \text { minute } \\
& \text { at } 100 \mathrm{~V}_{\mathrm{dc}} \text { at } \mathrm{RLH}=75 \% \text {. } \leq 10000 \mathrm{M} \Omega \\
& \text { at RLH between } 75 \% \text { and } 95 \% \text {. } \leq 100 \mathrm{M} \Omega \\
& \text { Losses at } 1 \mathrm{Mc} / \mathrm{s} \pm 10 \% \text {, measured at } 1 \mathrm{Vac}_{\mathrm{ac}} \text { : } \\
& \text { parallel damping for } C<10 \mathrm{pF} \text {. } \leq 5 \mathrm{M} \Omega \\
& \tan \delta \text { for } C>10 \mathrm{pF} \text {. } \leq 10 \times 10^{-4} \\
& \text { Change of capacitance after humidity test } \\
& \text { acc. to NT 14-5-3.1 non-insulated capacitors < 1\% or } 0.5 \text { pF } \\
& \text { acc. to NT 14-4-3.1 insulated capacitors }<1 \% \\
& \text { Permissible working temperature }-25 /+85^{\circ} \mathrm{C} \\
& \text { Climatic group number 25/85/4 (IEC) } \\
& \text { Capacitance and tolerances see table }
\end{aligned}
$$

Temperature coefficient of capacitance

Approx. $+100 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}} \leq 8.2 \mathrm{pF}$
approx. 0 for $\mathrm{C}_{\mathrm{n}}=10-27 \mathrm{pF}$;
approx. $-150 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}} \geq 33 \mathrm{pF}$.

Composition of the type number

Example

The type number of a non-insulated 18 pF capacitor with a tolerance of $\pm 1 \mathrm{pF}$ is $\mathrm{C} 302 \mathrm{AB} / \mathrm{M} 18 \mathrm{E}$.

CERAMIC CAPACITORS - C302 series

CLASS IC, MIDGET TUBULAR TYPE

version			non-insulated (Fig. 1)			insulated (Fig. 2)	
$\begin{aligned} & \text { cap. } \\ & \text { pF } \end{aligned}$	tolerance	temp.coef. $\ldots \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$\begin{gathered} L_{1} \\ (m m) \end{gathered}$	$\begin{gathered} a \\ (m m) \end{gathered}$	type number	$\begin{aligned} & L_{\max } \\ & (\mathrm{mm}) \end{aligned}$	type number
3.9	$\pm 0.5 \mathrm{pF}$	$+100$	9	5	C302AA/L3E9	12	C302CA/L3E9
4.7	, ,	,,	,	,	/L4E7	,	/L4E7
5.6	,	,	"	,	/L5E6	.,	/L5E6
6.8	$\pm 1 \mathrm{pF}$,	,	,	/M6E8	,	/M6E8
8.2	,"	"	,	,	/M8E2	,	/M8E2
10	"	0	-	"	AB/M10E	,	CB/M10E
12	,"	, ,	,	,,	/M12E	, ,	/M12E
15	,	"	"	,	/M15E	,	/M15E
18	,	, ,	,	, ,	/M18E	,	/M18E
22	,"	,"	,	,	/M22E	, ,	/M22E
27	"	"	"	,	/M27E	,	/M27E
33	$\pm 3 \%$	- 150	"	"	AC/K33E		CC/K33E
39	+	,	,	"	/K39E	,	/K39E
47	",	"	"	,	/K47E	"	/K47E
56	"	,	.	,	/K56E	.	/K56E
68	"	',	"	,	/K68E	'"	/K68E
82	,	,	\cdots	,	/K82E	,	/K82E
100	,	"	11	7	/K100E	14	/K100E
120	,	,	13.5	7	/K120E	16.5	/K120E
150	,,	"	16.5	11	/K150E	19.5	/K150E
180	,	"	20	11	/K180E	23	/K180E

C333 series - CERAMIC CAPACITORS

TYPE IB, PLATE CAPACITORS FOR $40 V_{d c}$

Application

These plate capacitors are especially designed for use in all kinds of small transistorised equipment, for tuning and other purposes where low losses are required.
Owing to the use of low K-ceramic material, these capacitors have low losses, a high stability and a linear temperature dependence of the capacitance. Their extremely small dimensions and pitch distance with a close tolerance, adapted to the standard pattern of printed wiring boards, makes them most suitable for those applications where miniaturisation and easy mounting are required.

Construction

The capacitor consists of a thin rectangular ceramic plate, toth sides of which are metallised. The capacitor is fully insulated by a special coating, which ensures an excellent behaviour under unfavourable atmospheric conditions. The temperature coefficient of the capacitors is indicated by a colour code which covers the capacitor fully or partly. The capacitor has a width of 5 mm maximum.

Electrical specification

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930-1060 mbar and a relative humidity of 75%.

Working voltage $40 \mathrm{~V}_{\mathrm{dc}}$
Test voltage (during 1 minute) $120 \mathrm{~V}_{\text {de }}$
Test voltage against coating (during 1 minute) . . . $120 \mathrm{~V}_{\mathrm{dc}}$
Insulation resistance, measured at $10 \mathrm{~V}_{\mathrm{dc}}$ within 1 minute $<1000 \mathrm{M} \Omega$
Dissipation factor at $1 \mathrm{Mc} / \mathrm{s}$, measured
at a voltage of $3.5 \mathrm{~V}_{\mathrm{ac}} \ldots \ldots$ for $\mathrm{C}_{\mathrm{n}}<50 \mathrm{pF} \leqq 15\left(\frac{15}{\mathrm{C}(\mathrm{pf})}+0.7\right) \times 10^{-4}$
$\left(\max 55 \times 10^{-4}\right)$
for $C_{n}>50 \mathrm{pF} \leqq 15.10^{-4}$
Permissible working temperature $-25 /+85^{\circ} \mathrm{C}$
Climatic group number 25/085/21 (IEC)
Cafacitance values and tolerances see tables

Composition of the type number
BA for $0.6 \mathrm{~mm} \varnothing$ leads
CA for $0.4 \mathrm{~mm} \varnothing$ leads

CERAMIC CAPACITORS - C333 series

TYPE IB. PLATE CAPACITORS FOR $40 \mathrm{~V}_{\mathrm{dc}}$

Temperature coefficient

temperature coefficient	tolerance	temp. coef. colour	type number
$\mathrm{P} 100=+100 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$(-40 /+120) \times 10^{-6} /{ }^{\circ} \mathrm{C}$	red violet	$\mathrm{C} 333 \mathrm{BA} / \ldots$
$\mathrm{NPO}=0 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	for $\mathrm{C}_{\mathrm{n}} \leq 20 \mathrm{pF:}(-40 /+120) \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}}>20 \mathrm{pF}: \pm 40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	black	$\mathrm{C} 333 \mathrm{BB} / \ldots$
$\mathrm{N} 150=-150 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	for $\mathrm{C}_{\mathrm{n}} \leq 20 \mathrm{pF:}(-40 /+60) \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}}>20 \mathrm{pF:}: \pm 40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	orange	$\mathrm{C} 333 \mathrm{BC} / \ldots$
$\mathrm{N} 750=-750 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	for $\mathrm{C}_{\mathrm{n}} \leq 20 \mathrm{pF}:(-120 /+250) \times 10^{-6} /{ }^{\circ} \mathrm{C}$ for $\mathrm{C}_{\mathrm{n}}>20 \mathrm{pF}: \pm 120 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	violet	$\mathrm{C} 333 \mathrm{BH} / \ldots$

Mounting

When the leads have to be bent, cut or flattened, they should be relieved of the applied load at the body of the capacitor. For dip-soldering on printed wiring boards, a temperature up to $250^{\circ} \mathrm{C}$ and a soldering time of up to 5 seconds is permissible.

Class IB, C333 series

temperature coefficient		P100			NPO			N150			N750		
cap. ($p F$)	tolerance	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	H mm	typeno. suffix	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\underset{\mathrm{mm}}{\mathrm{H}}$	type no. suffix	$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	H mm	type no. suffix	$\begin{gathered} \mathbf{B} \\ \mathrm{mm} \end{gathered}$	$\begin{gathered} H \\ \mathrm{~mm} \end{gathered}$	typeno. suffix
1.0	$\pm 0.5 \mathrm{pF}$	3.7	5.2	BA/L1E									
1.2	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L1E2									
1.5	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L1E5									
1.8	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L1E8									
2.2	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L2E2									
2.7	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L2E7									
3.3	$\pm 0.5 \mathrm{pF}$	3.7	5.2	/L3E3	3.7	5.2	BB/L3E3						
3.9	$\pm 0.5 \mathrm{pF}$	5	6.5	/L3E9	3.7	5.2	/L3E9						
4.7	$\pm 0.5 \mathrm{pF}$	5	6.5	/L4E7	3.7	5.2	/L4E7						
5.6	$\pm 0.5 \mathrm{pF}$	5	6.5	/L5E6	3.7	5.2	/L5E6						
6.8	$\pm 0.5 \mathrm{pF}$	5	6.5	/L6E8	5	6.5	/L6E8				3.7	5.2	BH/L6E8
8.2	$\pm 0.5 \mathrm{pF}$,	5	6.5	/L8E2	3.7	5.2	BC/L8E2	3.7	5.2	/L8E2
10	$\pm 0.5 \mathrm{pF}$				5	6.5	/L10E	3.7	5.2	/L10E	3.7	5.2	/L10E
12	$\pm 0.5 \mathrm{pF}$				5	6.5	/L12E	3.7	5.2	JL12E	3.7	5.2	IL42E
15	$\pm 0.5 \mathrm{pF}$				5	6.5	JL15E	3.7	5.2	/L15E	5	6.5	/L15E
18	$\pm 0.5 \mathrm{pF}$				5	6.5	/L18E	3.7	5.2	/L18E	5	6.5	/L18E
22	$\pm 0.5 \mathrm{pF}$				5	6.5	/L22E	5	6.5	/L22E	5	6.5	fL22E
27	$\pm 2 \%$				5	6.5	/C27E	5	6.5	/C27E	5	6.5	/C27E
33	$\pm 2 \%$				5	6.5	$1 \mathrm{C33E}$	5	6.5	/C33E	5	6.5	/C33E
39	$\pm 2 \%$				5	6.5	/C39E	5	6.5	/C39E	5	6.5	/C39E
47	$\pm 2 \%$				5	6.5	1C47E	5	6.5	/C47E	5	6.5	/C47E
56	$\pm 2 \%$							5	6.5	/C56E	5	6.5	/C56E
68	士 2%										5	6.5	/C68E
82	$\pm 2 \%$										5	6.5	/C82E
100	$\pm 2 \%$										5	6.5	/C100E
120	$\pm 2 \%$										5	8.5	/C120E
150	$\pm 2 \%$										5	8.5	/C150E

C301, C318 series - CERAMIC CAPACITORS

CLASS II, TUBULAR TYPE

C301, C318 versions

Application

Class II tubular ceramic capacitors are made of high-K dielectric materials. They are suitable for bypass and coupling purposes in all kinds of equipment where a high capacitance and small dimensions are of importance and the losses need not be minimized. These capacitors can be supplied in the C301 and in the C318 range. If small dimensions are essential, preference is given to the former range, but if a linear temperature dependence is of greater importance, the latter range is recommended. The temperature dependence of the ranges C301 and C318 is illustrated by the graphs 1 and 2 respectively, the latter of which conforms to the class II-A requirements.

Construction

The capacitors of both ranges consist of a ceramic tube, internally and partly externally covered with a fired-on coating of silver. Two leads of tinned copper, wound around the tube, are soldered to these coatings. A coating of special lacquer protects the non-insulated types against atmospheric influences. The coating of the insulated types allows them to be mounted close together or against a metal frame.

Electrical specification

Unless otherwise specified, all electrical values apply at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of 45% to 75%.

Max. working voltage at $85{ }^{\circ} \mathrm{C}$
Test voltage (during 1 minute)
Test voltage against coating (insulated capacitors) during 1 second 750 V dc
Max. current for a.c.-loads 500 m Insulation resistance at $500 \mathrm{~V}_{\text {dc }}$
Dissipation factor at $1 \mathrm{kc} / \mathrm{s}$ me
Temperature dependence
for C301
for C318
Permissible working temperatur
Climatic group number

CERAMIC CAPACITORS - C301, C318 series

CLASS II, TUBULAR TYPE

Capacitance and tolerance

The table gives the E-6 capacitance series.
Capacitance values out of the E12 series are available on special order subject to minimum order release requirements. The C318 series is available upon request only, with a 10% tolerance on the capacitance and in acceptable quantities.

Class II tubular type C301

capacitance $(p F)$	tolerance $(\%)$	1 $(\mathrm{~mm})$	p $(\mathrm{~mm})$	type number suffix (lacquered)	type number suffix (insulated)
680	$-20 /+50$	12	7.6	$\mathrm{GA} / \mathrm{H} 680 \mathrm{E}$	$\mathrm{BA} / \mathrm{H} 680 \mathrm{E}$
1000	\because	12	7.6	$/ \mathrm{H} 1 \mathrm{~K}$	$/ \mathrm{H} 1 \mathrm{~K}$
1500	\because	12	7.6	$/ \mathrm{H} 1 \mathrm{~K} 5$	$/ \mathrm{H} 1 \mathrm{~K} 5$
2200	\because	12	7.6	$/ \mathrm{H} 2 \mathrm{~K} 2$	$/ \mathrm{H} 2 \mathrm{~K} 2$
3300	\because	12	7.6	$/ \mathrm{H} 3 \mathrm{~K} 3$	$/ \mathrm{H} 3 \mathrm{~K} 3$
4700	\because	16	10.2	$/ \mathrm{H} 4 \mathrm{~K} 7$	$/ \mathrm{H} 4 \mathrm{~K} 7$
6800	\because	20	12.7	$/ \mathrm{H} 6 \mathrm{~K} 8$	$/ \mathrm{H} 6 \mathrm{~K} 8$
10000	\because	22	17.7	$/ \mathrm{H} 10 \mathrm{~K}$	$/ \mathrm{H} 10 \mathrm{~K}$
15000	\because	30	20.3	$/ \mathrm{H} 15 \mathrm{~K}$	$/ \mathrm{H} 15 \mathrm{~K}$
22000	\because	40	30.5	$/ \mathrm{H} 22 \mathrm{~K}$	$/ \mathrm{H} 22 \mathrm{~K}$

Class IIA tubular type C318

capacitance (pF)	tolerance (\%)	$\underset{(\mathrm{mm})}{I}$	$\begin{gathered} p \\ (\mathrm{~mm}) \end{gathered}$	type number suffix
1000	± 20	12	7.6	BA/P1K
1500	',	12	7.6	/P1K5
2200	,	14	7.6	/P2K2
3300	,	18	12.7	/P3K3
4700	,	22	17.7	/P4K7
6800	"	28	20.3	/P6K8
10000	.'	38	30.5	/P10K

graph 1.

C318../..
type number suffix

graph 2.

C322, C325 series - CERAMIC CAPACITORS

CLASS II, PIN-UP TYPE FOR 500 V $_{\mathrm{dc}}$ AND $125 \mathrm{~V}_{\mathrm{dc}}$

Application

These ceramic capacitors are suitable for bypass, coupling and general purposes, where low losses and high stability of capacitance are not of major importance. They feature a high insulation resistance and a low inductance. The configuration of the terminals is adapted to the printed wiring technique; when mounted in a vertical position, the capacitors occupy but a minor area.
The C325 series of pin-up capacitors have been designed for application where high voltages are not required, e.g. transistor equipment.

Construction

The capacitor consists of an internally and externally fully metallised ceramic tube. The connecting leads of tinned copper, soldered to the metal layers, have a pitch of 7.5 mm .
The capacitors are coated with a tan-coloured insulation lacquer, which acts as a seal against moisture and mechanical damage, and permits the capacitors to be mounted close together, or against a metal plate. The capacitors are colour coded.

Electrical specification

Unless otherwise specified all electrical values apply at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of 45% up to 75%.

Capacitance values according to E12 series are available on special order subject co minimum order release require ments.

CERAMIC CAPACITORS－C322，C325 series

CLASS II，PIN－UP TYPE FOR $500 \mathrm{~V}_{\mathrm{dc}}$ AND $125 \mathrm{~V}_{\mathrm{dc}}$
C322 series for $\mathbf{5 0 0} \mathbf{V}_{\text {dc }}$

capacitance （pF）	tolerance	class	$\begin{aligned} & \Delta C / C \\ & =f(T) \end{aligned}$	parallel damping	$\begin{gathered} \tan \delta \\ \times \quad 10^{-4} \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{~mm}) \end{gathered}$	type number （insulated）
1.5	$\pm 1 \mathrm{pF}$	II	＜ 10%	$\geq 5 \mathrm{MOhm}$	－	6.5	C322DD／M1E5
2	，	＂	＂	＂	－	7.5	／M2E
3	－	＂	，	，	－	7.0	／M3E
4	－	＂	＂，	，	－	6.5	／M4E
5	＂	＂	，	＂		7.5	MM5E
6	＂	＂	＂	＂	－	7.5	IM6E
8	＂	＂	＂	＂	－	7.5	／M7E
8	＂，	＂	＂	＂，	－	8.0	／M8E
${ }^{9} 8$	，	，	，	，	－	8.0	／M9E
10		＂	，	＂		7.0	／M10E
15	$\pm 20 \%$	＂	＂	－	$\leqslant 25$	8.0	／P15E
22	＇＇	＂	＂	－	25 25	7.5	／P22E
33	＂	＂	＂	－	25	8.5	／P33E
47	＂	＂	$<25 \%$	－	100	8.5	C322DC／P47E
68	－	＂	＂	－	100	7.0	／P68E
100	＂	＂	＂	－	100	7.5	／P100E
150	＂	＂	＇	－	100	7.5	／P150E
220	，	，	＂	一	100	8.0	／P220E
330	，	＂，	＂	－	350	9.0	／P330E
470 680	＂	＂	＂	二	350 350	7.5	／P470E
680	＂	＂	＂	－	350	8.0	／P680E
1，000	$-20 /+50 \%$	＂	＜ 40%	－	350	8.0	C322DA／H1K
1，500	＂	，	，＂	－	350	8.0	／H1K5
2，200	，	，	＂	－	350	10.5	／H2K2
3，300	＂	．，	＂	－	350	14.0	／ H 3 K 3
4.700	，	，	＂	－	350	19.0	／H4K7
6，800	＂	＂	＂	－	350	23.0	／H6K8
10,000	＂	＂	＂	－	350	29.0	／H10K
1，000	$\pm 20 \%$	＂	＜25\％	－	350	8.5	C322DCIP1K
1，500	＊	，＂	．．	－	350	11.0	／P1K5
2，200	＂	＂	＂	－	350	15.0	／P2K2
3，300	，	，	，	二	350	21.0	$1 \mathrm{P3K3}$
4，700	＊	＂	，	－	350	29.0	1P4K7

C325 series for $\mathbf{1 2 5}^{\mathbf{d c}}$

capacitance （pF）	tolerance	class	$\begin{gathered} 1 C / C \\ =f(T) \end{gathered}$	$\begin{gathered} \tan \delta \\ \times \quad 10^{-4} \end{gathered}$	$\begin{gathered} 1 \\ (\mathrm{~mm}) \end{gathered}$	type number （insulated）
2，200	$-201+50 \%$	11	$<40 \%$	350	8.0	C325DA／H2K2
3，300	．＂	，		．	9.0	／ H 3 K 3
4，700	＂，	＂	＂	．	9.5	／H4K7
6，800	＂，	＂	，	＂	12.0	$1 \mathrm{H}^{\prime} \mathrm{K} 8$
10，000	\cdots	＊	＂	＂	16.5	／H40K

Composition of the type number

C331, C332 series - CERAMIC CAPACITORS

TYPE II, PLATE CAPACITORS FOR $40 \mathrm{~V}_{\mathrm{de}}$

Application

These "microplates" are especially designed for use in all kinds of small transistorised equipment, for coupling and decoupling purposes. Their extremely small dimensions and pitch distance (with a close tolerance) adapted to the standard pattern of printed wiring boards, render them very suitable for those applications where miniaturisation and easy mounting are required. The capacitance of the C332 range depends little on temperature (graph 1). The C331 range has higher capacitance values at the same dimensions, but its temperature dependence is somewhat greater (graph 2).

Construction

The capacitor consists of a thin rectangular ceramic plate of high-K material, both sides of which are metallised. The capacitor is fully insulated by a special coating, which ensures an excellent behaviour under infavourable atmospheric conditions. The capacitor width is 5 mm maximum.
The capacitors are marked in black script.

Electrical specification

Unless otherwise specified, all electrical values apply at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of 930-1060 mbar and a relative humidity of 75%.

Mounting

When the leads have to be bent, cut or flattened, they should be relieved of the applied load at the body of the capacitor. For dip-soldering on printed wiring boards, a temperature up to $250^{\circ} \mathrm{C}$ and a soldering time of up to 5 seconds is permissible.

CERAMIC CAPACITORS - C331, C332 series

TYPE II, PLATE CAPACITORS FOR $40 \mathbf{V}_{\mathrm{dc}}$
Composition of the type number
AA for $0,6 \mathrm{~mm} \varnothing$ leads

$C A$ for $0,6 \mathrm{~mm} \varnothing$ leads \rightarrow type number suffix | BA for $0,6 \mathrm{~mm} \varnothing$ leads |
| :---: |
| CA for $0,4 \mathrm{~mm} \varnothing$ leads |\longrightarrow type number suffix

C331 series, class II

capacitance (pF)	tolerance (\%)	dimensions			marking	type number suffix
		$\begin{gathered} B \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} H \\ (\mathrm{~mm}) \end{gathered}$	fig.		
1000	$-20+100$	3.7	5.2	1	T	/R1K
2200	$-20+100$	3.7	5.2	1	x	/R2K2
4700	$-20+100$	4.5	6.0	2	Z	/R4K7
10000	$-20+100$	5.0	8.5	2	10K	/R10K

C332 series, class IIA

capacitance (pF)	tolerance (\%)	dimensions			marking	type number suffix
		$\begin{gathered} B \\ (m m) \end{gathered}$	$\underset{(m m)}{H}$	fig.		
180	± 10	3.7	5.2	1	J	/A180E
220	± 10	3.7	5.2	1	K	/A220E
270	± 10	3.7	5.2	1	L	/A270E
330	± 10	3.7	5.2	1	M	/A330E
390	± 10	3.7	5.2	1	N	/A390E
470	± 10	3.7	5.2	1	P	/A470E
560	± 10	3.7	5.2	1	Q	/A560E
680	± 10	5.0	6.5	2	680	/A680E
820	± 10	5.0	6.5	2	820	/A820E
1000	± 10	5.0	6.5	2	1 K	/A1K
1200	± 10	5.0	6.5	2	1K2	/A1K2
1500	± 10	5.0	6.5	2	1 K 5	/A1K5
1800	± 10	5.0	6.5	2	1K8	/A'K ${ }^{\text {3 }}$

graph 1

graph 2

C330 series - CERAMIC CAPACITORS

BARRIER LAYER CAPACITORS FOR 6V ${ }_{\text {dc }}$

fig. 1

fig. 2

Application

Owing to the use of a new technique of manufacturing, these capacitors have a very high capacitance and a low working voltage at very small dimensions.
Therefore they are very suited for coupling and decoupling purposes in small transistorised equipment. for example in IF stages of radio receivers.

Construction

The capacitor consists of a thin rectangular plate, which has been given semiconducting properties by a reducing process. The surface is oxidised on both sides, thus forming a barrier layer. Thus two capacitances with a series resistance in between are formed (see Fig. 1).
The whole is covered with a blue insulating lacquer. The distance between the leads is fixed at 2.5 mm , with a close tolerance, adapted to the standard pattern of printed-wiring boards. The 22000 and 47000 pF capacitors are marked in black script as shown in Figs 1 and 2 respectively. The 100000 pF type is marked with: $0.1 ; 6 \mathrm{~V}$.

Electrical specification

Unless otherwise specified, all electrical values apply to a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060$ mbar and a relative humidity of 45% to 75%.

$$
\begin{aligned}
& \text { Maximum working voltage at } 55^{\circ} \mathrm{C} \text {. } 6 \mathrm{~V}_{\mathrm{de}} \\
& \text { Test voltage against coating (during } 1 \text { minute) } 15 \mathrm{~V}_{\mathrm{dc}} \\
& \text { Insulation resistance at } 6 \mathrm{~V}_{\mathrm{dc}} \text { (within } 1 \text { minute) }>150,000 \mathrm{~S} 2 \\
& \text { at } 3 \mathrm{~V}_{\text {de }} \text { (within } 1 \text { minute) }>500,000 \Omega \\
& \text { Impedance at } 10 \mathrm{Mc} / \mathrm{s} \text { for } 47000 \text { and } 1000.000 \mathrm{pF} \text {. } \leqslant 5 \Omega \\
& \text { for } 22000 \mathrm{pF} \text {. } \leqslant 10 \Omega \\
& \text { Max. working temperature }-10 /+55^{\circ} \mathrm{C} \\
& \text { Max. storage temperature }-40 /+55^{\circ} \mathrm{C} \\
& \text { Climatic group number 10/055/21 (IEC) } \\
& \text { Capacitance values and tolerances see table }
\end{aligned}
$$

Mounting

When the leads have to be bent, cut or flattened, they should be relieved of the applied load at the body of the capacitor. For dip-soldering on printed wiring boards, a temperature up to $250^{\circ} \mathrm{C}$ and a soldering time of up to 5 seconds is permissible.

CERAMIC CAPACITORS - C330 series

BARRIER LAYER CAPACITORS FOR 6V $\mathbf{V c}_{\mathrm{d}}$

fig. 3

Barrier layer C330-series

capacitance$(p F)$	tolerance	dimensions			type number suffix
		$\begin{gathered} B \\ (m m) \end{gathered}$	$\begin{gathered} H \\ (\mathrm{~mm}) \end{gathered}$	fig.	
22000	$-20 /+100 \%$	3.7	$\times 5.2$	1	R22K
47000	$-20 /+100 \%$	5.0	+6.5	2	R47K
100000	$-20 /+100 \%$	5.0	+ 10.5	2	R0,1

Composition of the type number

C321 series - CERAMIC CAPACITORS

SAFETY CAPACITORS, TUBULAR TYPE FOR $700 \mathrm{~V}_{\mathrm{dd}}$

Application

These ceramic capacitors withstand a test voltage of $2000 \mathrm{~V}_{\text {rms }}$ for 1 minute, the international requirement for capacitors connected between the mains and conductive parts which might be touched. Therefore, they are very suitable for use in radio and television sets.

Construction

The capacitor consists of a ceramic tube internally and partly externally covered with a fired-on coating of silver. The connecting leads are soldered to the silver electrodes. A coating of special grey lacquer protects the capacitors against atmospheric influences. The capacitors are marked in black script with an H followed by capacitance value in pF and a letter indicating the tolerance.

Electrical specification

Unless otherwise specified, all electrical values apply at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of 45% to 75%.

$$
\begin{aligned}
& \text { Working voltage . } 700 \mathrm{~V}_{\mathrm{dc}} \\
& \text { Test voltage (during } 1 \text { minute) } 2000 \mathrm{~V}_{\mathrm{dc}} \\
& \text { Insulation resistance measured at a voltage of } 500 \mathrm{~V}_{\mathrm{dc}} \ldots . . \geqslant 50000 \mathrm{MS} \\
& \text { Dissipation factor at } 1 \mathrm{Mc} / \mathrm{s} \\
& \text { measured at a voltage }<3.5 \mathrm{~V}_{\mathrm{ac}} \text {. } \leqslant 10 \times 10^{-4} \\
& \text { Permissible working temperature }-40 /+85^{\circ} \mathrm{C} \\
& \text { Climatic group number 40/085/21 (IEC) }
\end{aligned}
$$

Composition of the type number

CERAMIC CAPACITORS - C321 series

SAFETY CAPACITORS, TUBULAR TYPE FOR 700V ${ }_{\text {de }}$

$\begin{gathered} \text { cap. (pF) } \\ \text { tol. } \pm 10 \% \end{gathered}$	dimensions (mm)			type number
	d	1	p*	
10	3	18	10.2	C321GA/A10E
12	3	18	10.2	/A12E
15	3	18	10.2	/A15E
18	3	18	10.2	/A18E
22	3	18	10.2	/A22E
27	3	18	10.2	/A27E
33	3	18	10.2	/A33E
39	3	18	10.2	/A39E
47	4	18	10.2	/A47E
56	4	18	10.2	/A56E
68	4	18	10.2	/A68E
82	4	18	10.2	/A82E
100	4	20	10.2	/A100E
120	4	20	10.2	/A120E
150	4	22	12.7	/A150E
180	4	24	12.7	/A180E
220	4	28	17.7	/A220E
270	4	32	20.3	/A270E
330	4	36	25.4	/A330E
390	4	40	30.5	/A390E
470	4	46	35.6	/A470E
560	4	52	40.6	/A560E

* P is the distance between the leads.

C90

C309 series - CERAMIC CAPACITORS

CLASS I, CLASS II; MINIATURE FEED-THROUGH CAPACITOR FOR 350V

Application

Ceramic feed-through capacitors are designed for decoupling the supply leads of high-frequency equipment, for instance in T.V. tuners. However, due to their extremely low inductances, they might also

Fig. 1. be used in frequency-determining circuits in similar equipment. Since in this application (e.g. in VHF/UHF tuners) low losses are required, class I types should be chosen. The version with a central pin is provided with sufficient soldering tin to facilitate mounting.

Construction

The capacitors consist of a ceramic tube provided with silver electrodes. The outer connection is formed by a flange, and the inner one by a split pen (Fig. 1) or an axial lead (Fig. 2). The split-pen version is provided with sufficient soldering tin, which facilitates mounting. The capacitors are marked in black script or with a colour dot. The lead feed-through type is not marked.

*12 mm for the 4700 pF capacitor

Electrical specification

Unless otherwise specified all electrical values apply at a temperature of $20 \pm 5^{\circ} \mathrm{C}$, an atmospheric pressure of $930-1060 \mathrm{mbar}$ and a relative humidity of $\mathbf{4 5 \%}$ to 75%

Working voltage at $85{ }^{\circ} \mathrm{C}$	$350 \mathrm{~V}_{\mathrm{dc}}$
Test voltage (during 1 minute)	$1050 \mathrm{~V}_{\text {dc }}$
Dissipation factor	仡
Insulation resistance measured at $100 \mathrm{~V}_{\text {de }}$	$>10000 \mathrm{M} \Omega$
Temperature dependence of the capacitance	See table
Permissible working temperature	$-40 /+85^{\circ} \mathrm{C}$
Climatic group number	40/085/21
Capacitance and tolerance	See tables

CERAMIC CAPACITORS - C309 series

CLASS I, CLASS II; MINIATURE FEED-THROUGH CAPACITORS FOR $350 \mathbf{V}_{\mathrm{dc}}$

Mounting

The following soldering procedure is advised:
Heat and cool gradually (approximately $50^{\circ} \mathrm{C} / \mathrm{s}$). The time during which the soldering tin is fluid should be kept as short as possible. The central lead should not be soldered within 1 mm from the tube. A soldering alloy of 60% tin, 36% lead and 4% silver, or 50% tin, 46% lead and 4% silver is recommended.

Table I

capacitance values (pF)	$\tan \delta \times 10^{-4}$	measuring frequency
$\text { range } 1\left\{\begin{array}{rr} 2.2- & 47 \\ 68-100 \\ 220-330 \\ 470-2200 \end{array}\right.$	$\begin{aligned} & 10 \times \frac{141-2 C}{47} \\ & 40 \\ & 100 \\ & 100 \\ & 350 \end{aligned}$	$\begin{array}{r} 100 \mathrm{kc} / \mathrm{s} \\ 100 \mathrm{kc} / \mathrm{s} \\ 100 \mathrm{kc} / \mathrm{s} \\ 1 \mathrm{kc} / \mathrm{s} \\ 1 \mathrm{kc} / \mathrm{s} \end{array}$
range $2\left\{\begin{array}{r}2-47 \\ 68-4700\end{array}\right.$	$\begin{array}{r} 25 \\ 500 \end{array}$	$1 \mathrm{Mc} / \mathrm{s}$ $1 \mathrm{kc} / \mathrm{s}$

Class IC, C309 series, split-pen type

capacitance (pF)	tolerance	temp. coeff. $\left(10^{-8} /{ }^{\circ} \mathrm{C}\right)$	type number suffix
≤ 2.5		$+100$	BG/2E5
3.3	$\pm 0.5 \mathrm{pF}$	+ 100	BG/L3E3
4.7	+ 0.5 pF	+100	BG/L4E7
6.8	+ 1 pF	0	BG/M6E8
10	+ 1 pF	0	BG/M10E
15	$\pm 10 \%$	0	BG/A15E
22	$\pm 10 \%$	0	BG/A22E
33	$\pm 10 \%$	-750	BG/A33E
47	$\pm 10 \%$	- 750	BG/A47E

C309 series - CERAMIC CAPACITORS

CLASS I, CLASS II; MINIATURE FEED-THROUGH CAPACITORS FOR $350 \mathbf{V}_{\mathrm{dc}}$
Class II, C309 series, split-pen type

capacitance $(p F)$	tolerance	temp. depen- dency C between $-25 /+85^{\circ} \mathrm{C}$	type number suffix
68	$\pm 20 \%$	10	
100	$\pm 20 \%$	10	$\mathrm{BH} / \mathrm{P} 68 \mathrm{E}$
150	$\pm 20 \%$	20	$\mathrm{BH} / \mathrm{P} 100 \mathrm{E}$
220	$\pm 20 \%$	20	$\mathrm{BH} / \mathrm{P} 150 \mathrm{E}$
330	$\pm 20 \%$	20	$\mathrm{BH} / \mathrm{P} 220 \mathrm{E}$
470	$\pm 20 \%$	10	$\mathrm{BH} / \mathrm{P} 330 \mathrm{E}$
680	$\pm 20 \%$	10	$\mathrm{BH} / \mathrm{P} 570 \mathrm{E}$
1000	$-20 /+50 \%$	40	$\mathrm{BH} / \mathrm{P} 680 \mathrm{E}$
1500	$-20 /+50 \%$	40	$\mathrm{BH} / \mathrm{H} 1 \mathrm{~K}$
2200	$-20 /+50 \%$	40	$\mathrm{BH} / \mathrm{H} 1 \mathrm{~K} 5$

Class II, C309 series, lead feed-through type

capacitance ($p F$)	tolerance	type number suffix
2	$\pm 0.5 \mathrm{pF}$	UA/L2E
3	,	UA/L3E
4	"'	UA/L4E
5	,,	UA/L5E
6	$\pm 1 \mathrm{pF}$	UA/M6E
8	,	UA/M8E
10	"	UA/M10E
15	$\pm 10 \%$	UA/A15E
22	''	UA/A22E
33	"	UA/A33E
47		UA/A47E
68	$\pm 20 \%$	UA/P68E
100	''	UA/P100E
150	,	UA/P150E
220	"	UA/P220E
330	,	UA/P330E
470		UA/P470E
680	$-20 /+50 \%$	UA/H680E
1000	"	UA/H1K
1500	,	UA/H1K5
2200	"	UA/H2K2
3300	,	UA/H3K3
4700	",	UA/H4K7

Capacitance values according to the E12 series are available on special order subject to minimum order release requirements.

CERAMIC CAPACITORS - B8 600 01/02

TUBULAR TRIPLE BY-PASS TYPE

This multiple tropic-proof component meets the demand of the TV industry as regards simplification of receiving scts with tubes. Its compactness and efficient shape permit it to be mounted in the cantre screen of tube sockets.
The component is also very suitable to be used in combination with printed wiring.

E555 series - RC COMBINATIONS

This miniature typa of RC combination can be used as partly decoupled cathode resistor.

Working voltage of $\left(R_{1}+R_{2}\right)=\sqrt{P_{W} \times R_{\text {nom }}}$

resistance			capacitance (tolerance-20/+50\%) $(p F)$
$\left.\mathrm{R}_{1}{ }^{1}\right)$	$\left.\mathrm{R}_{\mathrm{I}}+\mathrm{R}_{2}{ }^{2}\right)$	code	
(Ω)	(Ω)	2700	
47	150	1000	101
47	120	1500	102
39	180	2700	103
39	120	2700	104
47	120	2700	105
39	150	2700	107
39	180	2700	108
47	180	2700	109
39	220	2700	110

' Tolerance $\pm 20 \%$

- Tolerance $\pm 20 \%$ or $\pm 10 \%$

Composition of the type number

RC COMBINATIONS - E559 series

MINIATURE VERSION

resistance (tolerance $\pm 10 \%$	capacitance		type number suffix

* Preferred types

Maximum permissible dissipation of the resistor as a function of temperature.

E560 series - RC COMBINATIONS

$\begin{gathered} \text { resistance } \\ \text { (tolerance } \pm 10 \% \text {) } \\ (\Omega) \end{gathered}$	capacitance		$\begin{gathered} \text { type number }{ }^{1} \\ \text { suffix } \\ \text { E560AA/ } \end{gathered}$
	(pF)	tolerance (\%)	
1,000	$2 \times 1,500$	$-20 /+50$	$136+38$
10,000	$2 \times 1,500$	$-20 /+50$	$148+38$
47,000	2×820	$-20 /+50$	$156+35$
47,000	2×47	± 10	$156+20$
47,000	2×100	± 10	$156+24$
47,000	2×150	± 20	$156+26$

[^23]Maximum permissible dissipation of the resistor as a function of temperature.

RC COMBINATIONS - E556 series

VERTICAL INTEGRATOR CIRCUIT

general purpose - E554 series

resistance tol. $\pm 10 \%$	capacitance tol. $-20 /+50 \%$ $($ pF $)$	type number suffix ${ }^{1}$ E 554AN	resistance tol. $\pm 10 \%$	capacitance tol.- $20 /+50 \%$	type number suffix ${ }^{1}$ E 554AA
100Ω	1,500	$124+38$	$22 \mathrm{k} \Omega$	1,500	$/ 52+38$
100	4,700	$124+44$	22	4,700	$152+44$
220	1,500	$128+38$	47	1,500	$156+38$
220	4,700	$128+44$	47	4,700	$156+44$
470	1,500	$132+38$	100	1,500	$160+38$
470	4,700	$132+44$	100	4,700	$160+44$
$1 \mathrm{k} \Omega$	1,500	$136+38$	220	1,500	$164+38$
1	4,700	$136+44$	220	4,700	$164+44$
2.2	1,500	$140+38$	470	1,500	$168+38$
2.2	4,700	$140+44$	470	4,700	$168+44$
4.7	1,500	$144+38$	$1 \mathrm{M} \Omega$	1,500	$172+38$
4.7	4,700	$144+44$	1	4,700	$172+44$
10	1,500	$148+38$			
10	4,700	$148+44$			

[^24]

Variable capacitors
Synthetic foil tuning capacitors D 4
Ceramic trimmers D13
Wire-wound trimmers D19
Air tuning capacitors D20
Correcting air capacitors D23
Concentric air trimmers D24
Air trimmers D26

SYNTHETIC FOIL TUNING CAPACITORS

SURVEY

The capacitors included in this range have a dielectric consisting of laminated synthetic foil and air. In addition to being of relatively small size they are of a remarkably high quality and compare very favourably with similar components of other manufacture.
The capacitors are particularly suitable for miniature personal radios and the larger portable variety, and may also be employed in all-wave receivers of the battery driven type.
The moving vanes rotate freely between the fixed stator vanes, ensuring good tracking at different frequencies. Clockwise rotation of the tuning shaft will produce an increase in capacitance.
In the interests of performance, adherence to the appropriate mounting plan given for each type is strongly recommended.
To avoid undue stress within the capacitor base plate when mounting, it is advisable to use screws having cylindrical heads rather than those of the counter-sunk type.

type number	AC1033	AC1034	$\begin{aligned} & \text { AC1034/01 } \\ & A C 1034 / 03 \end{aligned}$	AC1035	AC1036/01	AC1037/01	AC1038
```angle of rotation * law tolerance }\mp@subsup{}{}{1}\mathrm{ . % (nominal law)```	$\begin{gathered} 170+5 \\ \pm 5 \end{gathered}$	$\begin{gathered} 174+5 \\ \pm 3 \end{gathered}$	$\begin{gathered} 174+5 \\ \pm 5 \end{gathered}$	$\begin{gathered} 170+6 \\ \pm 5 \end{gathered}$	$\begin{gathered} 170+5 \\ \pm 3 \end{gathered}$	$\begin{gathered} 170+5 \\ \pm 3 \end{gathered}$	$\begin{gathered} 174+5 \\ \pm 3 \end{gathered}$
FM part . . . . pF ganging						0.7	0.7
tolerance ${ }^{2}$. . \%	$\pm 5$	$\pm 3$	$\pm 5$	$\pm 5$	$\pm 3$	$\pm 3$	$\pm 3$
operating torque gcm	400	400	400	400	450	450	500
torque against end stop . . . gcm	2000	2000	2000	$2000$	3000	3000	2000



application	variable   capacitances   $10^{\circ}-180^{\circ}(p F)$	trimmers   $(\mathrm{pF})$	dimensions   $(\mathrm{mm})$	type   number
Midget LW/MW personal sets	$55+155$	$2 \times 5$	$15 \times 15 \times 10$	AC1035
LW and MW personal sets	$80+180$	$2 \times 9$	$20 \times 20 \times 16$	AC1033
All-wave personal sets . .	$195+195$	-	$20 \times 20 \times 13$	AC1036/01
All-wave portable sets . .	$275+275$	-	$25 \times 25 \times 16$	AC1034
All-wave portable sets . .	$335+335$	-	$25 \times 25 \times 16$	AC1034/01
				AC1034/03
AM/FM personal sets . . .	$77+198+9.5+9.5$	$4 \times 5.5$	$20 \times 20 \times 18$	AC1037/01
AM/FM portable sets. . .	$280+280+14+14$	$4 \times 9$	$25 \times 25 \times 21.5$	AC1038

[^25]
## SYNTHETIC FOIL TUNING CAPACITORS

Suitable for tuning midget LW and MW personal radio sets.


The capacitor can be soldered on to the print panel by means of the five terminal tags.



angle of   rotation	capacitance swing	
	aerial   section	oscillator   section
$10^{\circ}$	0 pF	0 pF
$20^{\circ}$	4.9	3.24
$40^{\circ}$	16	9.7
$60^{\circ}$	28.9	16.2
$90^{\circ}$	52	25.9
$120^{\circ}$	80.1	35.6
$150^{\circ}$	114.1	45.3
$180^{\circ}$	155	55
total circuit	17 pF	15 pF
capacitance ${ }^{1}$		

${ }^{1}$ l.e. the value needed at $10^{\circ}$ to obtain the required frequency ratio and padding curve. It is made up as follows: the capacitance swing at $10^{\circ}$; the stray capacitance of the circuit; any additional capacitance required.

The cut oscillator section is suitable for an IF of 452, 460 or $470 \mathrm{kc} / \mathrm{s}$ (optimum values for waveband limits and total circuit capacitance will gladly be supplied on request).

## SYNTHETIC FOIL TUNING CAPACITORS

TYPE AC1033


Use two type M2.6 cylindrically-headed screws, which should not protrude by more than 2 mm into the capacitor.

angle of   rotation	capacitance swing	
	aerial   section	oscillator   section
$10^{\circ}$	0 pF	0 pF
$20^{\circ}$	5.8	4.8
$40^{\circ}$	34.9	14.3
$60^{\circ}$	61.6	23.9
$90^{\circ}$	91.9	38.2
$120^{\circ}$	131.8	51.3
$150^{\circ}$	180	65.7
$180^{\circ}$	20 pF	80
total circuit	22 pF	
capacitance ${ }^{1}$		

${ }^{1}$ I.e. the value needed at $10^{\circ}$ to obtain the required frequency ratio and padding curve. It is made up as follows: the capacitance swing at $10^{\circ}$; the stray capacitance of the circuit; any additional capacitance required.

The cut oscillator section is suitable for an IF of 452, 460 or $470 \mathrm{kc} / \mathrm{s}$ (optimum values for waveband limits and rotal circuit capacitance will gladly be stated on request).



## SYNTHETIC FOIL TUNING CAPACITORS

This type may be used for tuning pocket-size all-wave radio sets.



Use two type M2 cylindrically-headed screws, which should not protrude by more than 2 mm into the capacitor.

angle of   rotation	capacitance   swing
$10^{\circ}$	0
$20^{\circ}$	5 pF
$40^{\circ}$	20.2
$60^{\circ}$	36.8
$90^{\circ}$	66.1
$120^{\circ}$	102.0
$150^{\circ}$	145.0
$180^{\circ}$	195.0
total circuit	25 pF
capacitance	

${ }^{1}$ Dependent on the values of IF, frequency ratio and applied padding capacitor. The stated figures are given to permir calculation of law and ganging tolerances.
When IF and band limits have been decided on, optimum values can be determined for trimming frequencies, padding capacitors and padding deviation.

The capacitance law of the aerial section is adjusted relative to the oscillator section.

## SYNTHETIC FOIL TUNING CAPACITORS

TYPES AC1034, AC1034/01 and AC1034/03


Suitable for all-wave AM or AM/FM battery-driven radio sets.

## TYPE AC1034



Use two type M2.6 cylindric-ally-headed screws which should not protrude by more than 2 mm into the capacitor.


Mounting pattern or types AC1034 and AC1034/03. Type AC1034/01 is equipped with soldering tags for use in conventional wiring.

TYPES AC1034 and AC1034/01


${ }^{1}$ Dependent on the values of IF, frequency ratio and applied padding capacitor. The stated figures are given to permir calculation of law and ganging tolerances.
When IF and band limits have beendecided on, optimum values can be determined for trimming frequencies, padding capacitors and padding deviation.

The capacitance law of the aerial section is adjusted relative to the oscillator section.

## SYNTHETIC FOIL TUNING CAPACITORS

## TYPE AC1037/01



Appropriate for tuning camerasize $A M / F M$ battery-driven radio sets.


Use two type M2.6 cylindrically-headed screws, which should not procrude by more than 2 mm into the capacitor.

angle of rotation	capacitance swing			
	aerial section		oscillator section	
	AM	FM	AM	FM
$10^{\circ}$	0 pF	0 pF	0 pF	0 pF
$20^{\circ}$	5.75	0.57	4.3	0.57
$40^{\circ}$	19.0	1.82	13.3	1.82
$60^{\circ}$	35.2	2.90	22.4	2.90
$90^{\circ}$	64.4	4.62	36.2	4.62
$120^{\circ}$	100.7	6.36	49.9	6.36
$150^{\circ}$	145.5	8.02	63.5	8.02
$180^{\circ}$	198.0	9.50	77.0	9.50
total circuit capacitance ${ }^{1}$	21 pF	60 pF	21 pF	60 pF

${ }^{1}$ l.e. the value needed at $10^{\circ}$ to obtain the required frequency ratio and padding curve. It is made up as follows: the capacitance swing at $10^{\circ}$; the stray capacitance of the circuit; any additional capacitance required.

The cut oscillator section is suitable for an IF of 452,460 or 470 $\mathrm{kc} / \mathrm{s}$ (optimum values for waveband limits and total circuit capacitance will gladly be stated on request).



TYPE AC1038

For tuning all-wave AM/FM battery-driven radio sets. The spindle is shaped to fit a back-lash free gear drive.


angle of   rotation	capacitance swing	
	AM	FM
$10^{\circ}$	0	pF
$20^{\circ}$	0.05	pF
$40^{\circ}$	29.45	2.79
$60^{\circ}$	53.15	4.35
$90^{\circ}$	95.6	6.95
$120^{\circ}$	146.8	9.36
$150^{\circ}$	208.8	11.86
$180^{\circ}$	280.0	14.0
total circuit	35 pF	60 pF

${ }^{1}$ Dependent on the values of IF, frequency ratio and applied padding capacitor. The stated figures are given to permit calculation of law and ganging tolerances. When IF and band limits have been decided on, optimum values can be determined for trimming frequencies, padding capacitors and padding deviation.

The capacitance law of the aerial section is adjusted relative to the oscillator section.


D11

## SYNTHETIC FOIL TUNING CAPACITORS

## TYPE AC1039



For coy radio sets and similar simple TRF receivers.


上2Ji
capacitance swing $. \quad . \quad$.
effective angle of rotacion.

The trimmers are designed for use in radio and television receivers as well as industrial equipment. All types, except the C004FA, consist of an internally ground ceramic tube, in which an invar rotor is guided by a phosphor-bronze wire spring. Both ends of the rotor (one end only of C004EB) are slotted for screwdriver operation.
In certain applications the negative temperature coefficient characteristic of the components ensures adequate compensation for the effects of different temperatures.

type number	application
C004AA, C004BA, C004CA, C004HA, C004JA, C004ZZ, (UHF)	radio and television
C004FA (for printed wiring) . .	radio and television
C004EA, C004EB.	industrial applications


	types C004			
characteristics	$A A, B A, C A$,   EA, ZZ/04, ZZ/07	FA	EB	$\begin{gathered} J A \\ Z Z / 115 \\ Z Z / 116 \end{gathered}$
max. working voltage . . . . . . . $\left(\mathrm{V}_{\mathrm{dc}}\right)$	400	400	500	300
max. test voltage . . . . . . . . . $\left(V_{\text {dc }}\right)$	800	800	1000	650
temperature range . . . . . . . . ${ }^{\circ} \mathrm{C}$ )	-40 to +85	-40 to +85	-40 to +85	-40 to +75
max. contact resistance . . . . . . (m@)	3	3	3	10
min . parallel damping ( $1.5 \mathrm{Mc} / \mathrm{s}, \mathrm{C}_{\text {max }}$ ) ( $\mathrm{M} \Omega$ )	10	10	10	3
min. insulation resistance . . . . (M $\Omega$ )	10000	10000	10000	10000
operating torque . . . . . . . . $(\mathrm{gcm})$	40 to 500	15 to 700	50 to 250	20 to 200

Mounting holes (mm)
types C 004 .

AA	BA	$\begin{array}{r} C A, Z Z / 04 \\ Z Z / 07 \end{array}$	EA	EB	FA	$\begin{gathered} J A, Z Z / 116 \\ Z Z / 115 \end{gathered}$
		79	5.50		see p. D16	4.10

For more details see following pages

## C004 series - CERAMIC TRIMMERS

TUBULAR TYPES C004AA, BA, CA


figure	capacitance (pF)		angle of rotation	$\begin{aligned} & \text { dimensions } \\ & (\mathrm{mm}) \end{aligned}$		$\begin{gathered} \text { type } \\ \text { number } \end{gathered}$
	$C_{\text {var }}$	$C_{\text {min }}$		1	a	
1	3	0.8	approx. $3 \times 360^{\circ}$	5.5	13.5	C004AA/3E
1	6	0.8	approx. $5 \times 360^{\circ}$	8.5	16.5	16E
1	9	0.9	approx. $7 \times 360^{\circ}$	11.5	19.5	/9E
1	12	1.0	approx. $9 \times 360^{\circ}$	14.5	22.5	/12E
2	3	0.8	approx. $3 \times 360^{\circ}$	6.5	12.5	C004BA/3E
2	6	0.8	approx. $5 \times 360^{\circ}$	9.5	15.5	16E
2	9	0.9	approx. $7 \times 360^{\circ}$	12.5	18.5	19E
2	12	1.0	approx. $9 \times 360^{\circ}$	16	21.5	/12E
3	3	0.8	approx. $3 \times 360^{\circ}$	5.5	13.5	C004CA/3E
3	6	0.8	approx. $5 \times 360^{\circ}$	8.5	16.5	16E
3	9	0.9	approx. $7 \times 360^{\circ}$	11.5	19.5	/9E
3	12	1.0	approx. $9 \times 360^{\circ}$	14.5	22.5	/12E

## CERAMIC TRIMMERS - C004 series

C004JA,ZZ-MIDGET TUBULAR TYPE


The design of these trimmers is similar to the type C004AA, the several variations of which have proved reliable in countless TV tuners and radio sets. A thin, internally ground ceramic tube closely fits a threaded invar spindle. The spindle is guided by a U-shaped spring fixed by the silver plated brass cap. The JA type cap is to be soldered to the chassis thus providing excellent contact and also a sturdy mechanical mount. ZZ-types are secured by a mounting nut.
The stator is a silver-plated sleeve, fitted over the ceramic tube, which possesses a soldering eyelet.


```
test voltage
650 V dc
parallel damping at 1.5 Mc/s
\begin{tabular}{rl}
paralel damping at \(1.5 \mathrm{Mc} / \mathrm{s}\) \\
C004JA. & \(>3 \mathrm{M} \Omega\) \\
C004ZZ \(>10 \mathrm{M} \Omega\) \\
contact resistance \(<10 \mathrm{~m} \Omega\) \\
insulation resistance \(>10,000 \mathrm{M} \Omega\) \\
operating torque \(10-200 \mathrm{gcm}\). \\
temperature coefficient & \\
C004JA/6E, C004ZZ \((-200 \pm 200) \times 10^{-6} \mathrm{pF} / \mathrm{pF} / \circ \mathrm{C}\) \\
C004JA/3E & \((-200 \pm 100) \times 10^{-6} \mathrm{PF} / \mathrm{PF} /{ }^{\circ} \mathrm{C}\)
\end{tabular}
```

$C_{\text {var }}$   $(p F)$	$C_{\text {min }}$   $(p F)$	$L$   $(\mathrm{~mm})$	$L$   $(\mathrm{~mm})$	type number
3	0.8	$7.8 \pm 0.5$		COOLJA/3E
6	0.8	$10.8 \pm 0.5$		16 E
3	0.8	$7.3 \pm 0.5$	$8.3 \pm 1$	$\mathrm{ZZ} / 115$
6	0.8	$10.3 \pm 0.5$	$11.3 \pm 1$	$/ 116$

## TUBULAR TYPE C004FA FOR P.W. BOARDS



These trimmers are especially suitable for automatic insertion onto printed-wiring boards. They are equipped with two terminal pins spaced 5.08 mm apart to fit the most widely used grid i.e. holes of $1.32 \mathrm{~mm} \varnothing$ and a pitch of 2.54 mm (0.1").

capacitance   $(p F)$		angle   of rotation	dimensions   $(\mathrm{mm})$
$C_{\text {var }}$	$C_{\text {min }}$		type   number
6	2.5	approx. $3 \times 360^{\circ}$	26.5
10	3.5	approx. $3 \times 360^{\circ}$	26.5
20	3.5	approx. $5 \times 360^{\circ}$	35.5

## CERAMIC TRIMMERS - C004 series

TUBULAR TYPES C004ZZ


These trimmers are derived from the well known C004CA series. Being intended for very high frequencies, they are particularly suitable for UHF tuners and other electronic circuits operating in the higher frequency ranges.



## C004 series - CERAMIC TRIMMERS

## TUBULAR TYPE C004EA, EB



These capacitors have been designed for the precision trimming of professional equipment which operate at the higher frequencies.
Their simple form of construction guarantees high reliability and facilitates, moreover, a high breakdown voltage, good stability and high adjustment accuracy.
For many applications the negative temperature coefficient characteristic results in adequate compensation at various temperatures. The small dimensions contribute to the miniaturization of electronic equipment.

capacitance (pF)		temp. coeff.$\mathrm{pF} / \mathrm{pF} /{ }^{\circ} \mathrm{C} \times{ }^{10^{-6}}$	angle of rotation $a^{\circ}$ (approx.)	max. dimensions (mm)		type number
var. $\geq$	min. $\leq$			A	L	
3	0.8	$-200 \pm 200$	$3 \times 360^{\circ}$	13.5	10	C004 EA/3E
6	0.8	$-200 \pm 200$	$5 \times 360^{\circ}$	16.5	13	6 E
9	0.9	$-200 \pm 200$	$8 \times 360^{\circ}$	19.5	16	9E
12	1.0	$-200 \pm 200$	$9 \times 360^{\circ}$	22.5	19	12E
18	1.5	$-500 \pm 200$	$9 \times 360^{\circ}$	22.5	19	18E
3	0.5	$-10 \pm 60$	$7 \times 360^{\circ}$	23.5	13	C004 EB/3E
4.5	0.6	$-10 \pm 60$	$9 \times 360^{\circ}$	26.5	16	4E5
6	0.7	$-10 \pm 60$	$11 \times 360^{\circ}$	29	19	6E
9	0.9	$-200 \pm 60$	$9 \times 360^{\circ}$	26.5	19	9E
12	1.0	$-200 \pm 60$	$11 \times 360^{\circ}$	29	19	12E

$$
\begin{aligned}
& \text { Band } E= \text { connecting } \\
& \text { wire } \\
& G= \text { colour dot } \\
& \text { Band } C= \text { connecting } \\
& \text { wires } \\
& F=\underset{\text { wire }}{\text { adjusting }}
\end{aligned}
$$



Wire-wound trimmers have, over many years, proved to be very suitable for the trimming of radio sets and for use as adjustable capacitors in filters (e.g. as a padding capacitor).
Because of the high adjustable capacitance values available, they sometimes can replace the expensive combination of fixed capacitor and rotary trimmer.
The considerable advantages in price and volume serve to outweigh the one drawback of wire trimmers, namely, that their capacitance value can be decreased but not in-
 creased.

$$
\begin{aligned}
& \text { tolerance on capacitance } . ~ . ~
\end{aligned} .
$$

capacitance		fig.	dimensions (mm)		colour code	type number
$C_{\text {total }}$	$C_{\text {zero }}$		diameter	1		
6	max. 1	1	2	16	none	C015 BB/6E
12.5	max. 1.5	1	2	16	black	BB/12E5
25	max. 2	1	2	22	brown	BB/6E
25	max. 10	2	2	22	brown	AB/25E
50	max. 12.5	2	3	25	red	AB/50E
100	max. 25	2	3	25	orange	AB/100E
175	max. 50	2	3	28	yellow	AB/200E
275	max. 60	2	3	28	green	AB/300E
400	max. 70	2	3	34	blue	AB/400E
575	$\max .70$	2	3	45	white	AB/575E

## C001, C002 series - AIR TUNING CAPACITORS

## Type C001: $40 \times 40 \mathrm{~mm}$ <br> Type C002: $60 \times 60 \mathrm{~mm}$



Angle of rotation
Direction of rotation . . . . . .
0 to $180^{\circ}$ ( 15 to $175^{\circ}$ between stops at removable lock) or 0 to $360^{\circ}$; for logarithmic laws 0 to $180^{\circ}$ only;
clockwise to increase the capacitance; anti-clockwise types available to special order;
$\pm 0.7 \%$ between 15 and $175^{\circ}$;
$\leq 200+(\mathrm{n}-1) 50 \mathrm{gcm}$ ( $\mathrm{n}=$ number of ganged units); 200 to 500 gcm for heavy torque C001 single types (short shaft, with slot for screwdriver);
Frame
Shaft
Tolerance to law (curve)
Torque .

Shaft end
brass plates and nickel-plated bars, riveted and soldered together
ball bearings on both ends
a) none-insulated: one piece brass rod
b) insulated: brass and ceramic rods alternately linked;

6 mm diam., for C001 protruding 10 mm , for C002 protruding 14.5 mm ; one end or both ends protruding up to 50 mm available to special order;
plain brass vanes soldered to the shaft;
plain brass vanes soldered to rod and these suspended and insulated by means of ceramic pearls dipped in silicon;
a) other than standard capacitance law curves;
b) other than standard voltages;

Contact resistance
$<5 \mathrm{~m} \Omega$;
D.C. insulation resistance

Parallel damping
Climatic conditions
Temperature coefficient


These capacitors are designed for ind ustrial electronic equipment e.g. HF heating devices, radar and measuring equipment, etc.

Rotor
. . . . . . . . . . . .

## AIR TUNING CAPACITORS - C001, C002 series

## Dimensions

number of gangs			1	2	3	4
distance between mounting holes in $\mathrm{mm}( \pm 0.5)$.	L	C001	45	76.5	108	139.5
		C002	67	117.5	168	218.5
	t	C001	22			
		C002	35			
compartment length in mm	c	C001	31.5			
( $\pm 0.2$ )		C002	50.5			
	1	C001	16			
shaft length in mm ( $\pm 0.5$ )		C002	18			
	h	C001	22.5			
shaft height in mm ( $\pm 0.5$ )		C002	32.5			



## Type numbers

	single stator		split stator		differential ${ }^{1}$	
	$\begin{aligned} & \text { non insu- } \\ & \text { lated } \end{aligned}$	insulated	non insulated	insulated	non insulated	insulated
C001 linear law, standard torque	AA	DA	BA	EA	CA	FA
linear law, heavy torque ${ }^{1}$.	AE	DE	BE	EE	CE	FE
C002 linear law	AA	DA	BA	EA		
logarithmic law. .	$A C$	DC	BC	EC		

[^26]Example of a type number: triple version $60 \times 60$, logarithmic, 160 pF , insulated single stator: C002 DC/ $3 \times 160 \mathrm{E}$.

Type number C001. ./. ., size $a \times b=40 \times 40 \mathrm{~mm}$, linear capacitance law

single-stator								
or differen-	$\mathrm{C}_{\text {var }}(\mathrm{pF})$	16	25	40	64	100	160	250
tial type 1	$\mathrm{~V}_{\text {test }}\left(\mathrm{V}_{\mathrm{dc}}\right)^{3}$	$\mathrm{pF}^{2}$	8	8.5	9	9	10	11
		2500	2000	1500	1000	1000	800	650
split-stator	$\mathrm{C}_{\text {var }}(\mathrm{pF})$							
type	$\mathrm{C}_{\mathrm{o}}(\mathrm{pF}) \pm 1 \mathrm{pF}$	6.4	10	16	25	40	64	
	$\mathrm{~V}_{\text {test }}\left(\mathrm{V}_{\mathrm{dc}}\right)^{4}$	4000	3	3.6	4	4	4	

Type number C002. ./. ., size $a \times b=60 \times 60 \mathrm{~mm}$, linear capacitance law

single-stator	$C_{\text {var }}(\mathrm{PF})$	100	125	160	200	250	320	400	500	640
	$\mathrm{C}_{\text {o }}(\mathrm{pF}) \pm 1 \mathrm{pF}^{2}$	14.5	15	15.5	16	16	17.5	19	20.5	21.5
	$\mathrm{~V}_{\text {test }}\left(\mathrm{V}_{\text {dc }}\right)^{3}$	2000	2000	1500	1250	1250	1000	1000	1000	800
split-stator	$C_{\text {var }}(\mathrm{pF})$	25	32	40	50	64	80	100	125	
type	$\mathrm{C}_{0}(\mathrm{pF}) \pm 1 \mathrm{pF}$	5	5	5	5	5.5	5.5	5.5	6	
	$\mathrm{~V}_{\text {test }}\left(\mathrm{V}_{\mathrm{dc}}\right)^{4}$	4000	3000	3000	2500	2000	2000	2000	1600	

Type number C002. ./.., size $a \times b=60 \times 60 \mathrm{~mm}$, logarithmic capacitance law

single-stator	$\mathrm{C}_{\text {var }}$	(pF)	100	125	160	200	250	320	400	500
	$\mathrm{C}_{0}$	$(\mathrm{pF}) \pm 1 \mathrm{pF}^{2}$	13	13	14.5	14.5	14	14	14	14
	$V_{\text {test }}$	$\left(V_{\mathrm{dc}}\right)^{3}$	1500	1250	1000	1000	1000	800	800	650
split-stator type	$\mathrm{C}_{\text {var }}$ (	(pF)	25	32	40	50	64	80	100	125
	$\mathrm{C}_{0}$	(pF) $\pm 1 \mathrm{pF}$	5	5	5.5	5.5	5.5	5.5	5.5	5.5
	$\mathrm{V}_{\text {teat }}$ (	$\left(V_{\mathrm{dc}}\right)^{4}$	2500	2500	2000	2000	1600	1600	1600	1300

[^27]Type for industrial application

Base . . . . . . . . . .
Rotor . . . . . . .
Stator . . . . . . . .
Mounting . . . . .
Climatic conditions . . .

Available on request types
with

nickel-plated brass with pressed-in siliconized ceramic stator supports. brass vanes soldered on a shaft, which has a double-track ball-bearing and is slotted for screwdriver operation ( 0.8 mm width, 1.2 mm depth). Friction springs ensure a stable setting; insulated or non-insulated rotor optional. The $6 \mathrm{~mm} ø$ shaft can also be fitted with a control knob. brass vanes soldered to brass studs which are fixed to the ceramic stator support of the base.
in a 10.5 mm hole in a 4 mm max. thick panel by means of a nut, supplied with each capacitor.
tropic and arctic proof.
a. different operating voltages;
b. variations of capacitance;
c. different shaft lengths.

Capacitance range, type numbers and dimensions

	type no. single-stator type								
	non-insulated.   C003AA/ insulated.								
variation of capacitance . ( pF ) max.zero capacitance . . (pF) test voltage ${ }^{1}$. . . . . . $\left(V_{\mathrm{dc}}\right)$ length L. . . . . . . . (mm)	2.5	4	6.4	10	16	25	40	64	100
	2.5	2.5	3	3	3	4	4	4	4
	1500	1500	1500	1000	1000	1000	800	800	650
	23	23	23	23	23	28	28	28	28
	type no. split-stator type					differential type			
	non-insulated . . . . . . . C003BA/ . .insulated .					$\begin{aligned} & \text { C003CA/ . . } \\ & \text { C003FA/ . } \end{aligned}$			
variation of capacitance . (pF)   max. zero capacitance . (pF)   test voltage ${ }^{1}$. . . . . . $\left(\mathrm{V}_{\mathrm{dc}}\right)$   length L. . . . . . . . (mm)	1.6		4	10		2.5	10		40
	1.5		2	2.5		2.5	3		4
	2000		2000	1600		1500	1000		800
	23		28	28		23	23		28

[^28]

version	type number	maximum dimensions (mm)	
		below chassis (a)	above chassis (b)
non-insulated	C005 BA/ . .	$4 \pm 0.2$	28
insulated	C005 AA/ .	$9.5 \pm 2$	28
non-insulated: screwdriver-operated	C005 BB/. .	$9.5 \pm 2$	41.5
insulated; screwdriver-operated	$\operatorname{C005}$ AB/..	$9.5 \pm 2$	41.5
mounting on printed-wiring board	C005 BC/ .	$4 \pm 0.2$	34
mounting on printed-wiring board; screwdriver-operated	C005 BD/.	$4 \pm 0.2$	47.5

Example of indication: 6.4 pF trimmer for printed-wiring mounting: $\operatorname{COO5BC/6E4}$


For C005BC and BD

Variation of capacitance (pF) .
Maximum zero capacitance ( pF )
Test voltage ( $\mathrm{V}_{\mathrm{dc}}$ )
Climatic conditions. . . . . tropic and arctic-proof, according to MIL and IEC requirements D24


CC


CA/CC versions

type number	C005CA/30E	C005CA/60E	C005CC/30E	C005CC/60E
variable capacitance. zero capacitance parallel damping	min. 27 pF max. 3 pF $\min$. $3 M \Omega$	$\begin{aligned} & \min .58 \mathrm{pF} \\ & \max .3 .5 \mathrm{pF} \\ & \min . \quad 3 \mathrm{M} \Omega \end{aligned}$	min. 27 pF max. 3 pF $\min$. $3 M \Omega$	$\begin{aligned} & \min .58 \mathrm{pF} \\ & \max .3 .5 \mathrm{pF} \\ & \min . \quad 3 \mathrm{M} \Omega \end{aligned}$
dimensions (mm)				
a	25.5	37	32.5	44.5
b . . . . . .	10	16	15	21
c . . . . . . . . .	16	27	22.5	33.5



Type for industrial application.

Base . . . . . . . . . . high-quality siliconized ceramic.
Rotor . . . . . . . . . silver-plated brass vanes, soldered on a shaft which is slotted for
stator . . . . . . . . . silver-plated brass vanes, supported by bars which are soldered onto
the ceramic base.

Capacitance range, type numbers and dimensions

version	variation of   capacitance   $(p F)$	max. zero   capacitance   $(p F)$	test   voltage   $\left(V_{d c}\right)$	dimension   $L$	type number   without locking   device
	2.5	3	1250	17.5	C 012AA/2E5
	4	3	1000	17.5	C 012AA/4E
split-stator type	6.4	3	800	17.5	C 012AA/6E4
	10	3	800	21	C 012AA/10E
differential type	16	3	800	21	C 012AA/16E
	1.6	2	1600	17.5	C 012BA/1E6
	2.5	2	1600	21	C 012BA/2E5

[^29]

Not fitted with locking device.


Base
high-quality siliconized ceramic material.
Rotor . . . . . . . . . silver-plated brass vanes, soldered on a shaft which is slotted for screwdriver operation, with or without a locking device; slide bearing. Stator . . . . . . . . . silver-plated brass vanes, supported by sturdy bars, which are soldered onto the ceramic base.
Mounting by two M3 screws spaced of 13 mm apart in a 3 mm max. thick panel Climatic conditions tropic and arctic proof.

Capacitance range, type numbers and dimensions. Preferred types in bold print

version	variation of capacitance (pF)	max. zero capacitance (pF)	test   voltage $\left(V_{d c}\right)$	```dimension```	type number	
					without locking device	with locking device
single-stator type	6.4	3	1000	16	C006AG/6E4	C006A H/6E4
	10	3	800	16	C006AG/10E	C006A H/10E
	16	3.5	800	19.5	C006AG/16E	C006A H/46E
	25	3.5	800	19.5	C006AG/25E	C006A H/25E
	40	4	650	19.5	C006AG/40E	C006AH/40E
split-stator type ${ }^{1}$	2.5	2	1600	16	C006BG/2E5	C006BH/2E5
	4	2.5	1600	19.5	C006BG/4E	C006BH/4E
	6.4	2.5	1600	19.5	C006BG/6E4	C006BH/6E4
differential type	6.4	3	1000	16	C006CG/6E4	C006CH/6E4
	10	3	800	16	C006CG/10E	C006CH/10E
	16	$3.5$	800	$19.5$	C006CG/16E	$\mathrm{C} 006 \mathrm{CH} / 16 \mathrm{E}$
	25	3.5	800	19.5	C006CG/25E	C006CH/25E

[^30]


Not fitted with locking device.

## Base

Rotor . . . . . . . . . silver-plated brass vanes, soldered on a shaft which is slotted for screwdriver operation, with or without a locking device; slide bearing.
Stator . . . . . . . . . silver-plated brass vanes, supported by sturdy bars, which are soldered onto the ceramic base.
Mounting. . . . . . . . by two M3 screws spaced of 16 mm apart in a max. thick 3 mm panel. Climatic conditions . . . tropic and arctic proof.

Capacitance range, type numbers and dimensions. Preferred types in bold print

version	variation of capacitance ( pF )	maximum zero capacitance (pF)	test voltage $\left(V_{\mathrm{dc}}\right)$	$\begin{gathered} \text { dimension } \\ L \\ (\mathrm{~mm}) \end{gathered}$	type number	
					without locking device	with locking device
single-stator type	10	3.5	1500	23	C009AF/10E	C009AG/10E
	16	3.5	1000	23	C009AF/16E	C009AG/16E
	25	4	1000	23	C009AF/25E	C009AG/25E
	40	4.5	1000	26.5	C009AF/40E	C009AG/40E
	64	5	800	26.5	C009AF/64E	C009AG/64E
	100	5.5	800	36.5	C009AF/100E	C009AG/100E
split-stator type ${ }^{1}$	2.5	2	2500	23	C009BF/2E5	C009BG/2E5
	4	2	2500	26.5	C009BF/4E	C009BG/4E
	6.4	2	2000	26.5	C009BF/6E4	C009BG/6E4
	10	2.5	1600	26.5	C009BF/10E	C009BG/10E
	16	3	1600	36.5	$\mathrm{C} 009 \mathrm{BF} / 16 \mathrm{E}$	C009BG/16E
	25	3	1600	36.5	C009BF/25E	C009BG/25E

[^31]D28


Linear and non-linear
resistors

## CONTENTS

## FIXED LINEAR RESISTORS

series page
Carbon resistors for general applications
Survey of insulated and high stability types ..... E4
Insulated types
$0.1 \mathrm{~W}, 0.125 \mathrm{~W}, 0.25 \mathrm{~W}, 0.5 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{~W}$, tolerance $5 \%$ and $10 \%$. ..... B8 305 ..... E6
0.125 W stand-up version, tolerance $5 \%$ and $10 \%$ ..... B8 405 ..... E7
0.1 W with tangential leads, tolerance $10 \%$. ..... B830631 E7
0.05 W pin head version for micro-size applications, tolerance $20 \%$ ..... E011 ..... E8
High stability types
$0.125 \mathrm{~W}, 0.25 \mathrm{~W}, 0.5 \mathrm{~W}, 1 \mathrm{~W}$, tolerance $1 \%$ E003 ..... E9
Moulded metal-film resistors
$0.25 \mathrm{~W}, 0.5 \mathrm{~W}, 1 \mathrm{~W}$, tolerance $1 \% ; 0.5 \% ; 0.25 \% ; 0.1 \%$ RN60E ..... E10
RN65ERN70E
Wire-wound resistors for general applications
E114EB ..... E11
$0.4 \mathrm{~W}-1.8 \mathrm{~W}$, precision low-power types, tolerance $0.25 \%, 0.5 \%$ ..... 8351 ..... E12
$5.5 \mathrm{~W}-16 \mathrm{~W}$, tolerance $5 \%$ (low values $10 \%$ ) ..... 8354 ..... E13
$5 \mathrm{~W}, 8 \mathrm{~W}$ green cemented. E112 ..... E14
1W (lowohmic), tolerance 10\% E108AA ..... E14
Survey of adjustable and non-adjustable high-power types ..... E15
adjustable $10 \mathrm{~W}-40 \mathrm{~W}$, tol. $5 \%$ or $10 \%$ ..... B83004 E16
adjustable $60 \mathrm{~W}-250 \mathrm{~W}$, tal. $5 \%$. ..... B83004 E17
non adjustable $8 \mathrm{~W}-40 \mathrm{~W}$, tol. $5 \%$ or $10 \%$. ..... B83003 E18
non adjustable $60 \mathrm{~W}-250 \mathrm{~W}$, tol. $5 \%$ ..... B83003 E19cemented section types $20 \mathrm{~W}-44 \mathrm{~W}, 23 \mathrm{~W}-52 \mathrm{~W}$, tolerance $10 \%$B8301.E20
VARIABLE LINEAR RESISTORS
Carbon potentiometers for general applications
Trimming potentiometers (screwdriver-operated)
miniature version for transistorised equipment ..... E086 ..... E22
types for radio television receivers ..... E097 ..... E24
Single potentiometers, without or with single-pole switch 16 mm version for use in transistorised equipment ..... E088 ..... E26
23 mm version, conform MIL R-94A and CCTU-05-01 spec ..... E087 ..... E28
23 mm single, tandem and twin potentiometers for use in radio and TV single, without or with single or double-pole switch . ..... E098 ..... E29
tandem, without or with double-pole rotary switch ( $26 \mathrm{~mm} \varnothing$ ) ..... E091 ..... E32
twin, without or with single-pole ( $23 \mathrm{~mm} \varnothing$ ) or double-pole rotary switch ( $26 \mathrm{~mm} \varnothing$ ) ..... E090 ..... E34
Wire-wound potentiometers for use in industrial equipment
1 W -side terminals $75^{\circ} \mathrm{C}$ ambient temperature E199AA ..... E35
3 W -terminals at the bottom ..... E199AB ..... E36
3W-side terminals ..... E37 198
3W high stability, side terminals ..... E38
$30 \mathrm{~W}, 50 \mathrm{~W}, 120 \mathrm{~W}$ ..... E39
NON-LINEAR RESISTORS
NTC - Negative-temperature-coefficient thermistors

1. standard disc types series $B$ ..... E42
2. standard disc types series $E$ ..... E44
3. standard rod types ..... E46
4. mounted disc types ..... E48
5. miniature types ..... E50
6. indirectly heated types ..... E54
7. special types for motor cars and household appliances ..... E60
8. special types for radio and television ..... E61
PTC - Positive-temperature-coefficient thermistors
9. standard discs $1 \mathrm{~W}, 40-50 \mathrm{~V}$ ..... E70
10. standard dises $0.5 \mathrm{~W}, 25 \mathrm{~V}$ ..... E73
11. special types ..... E76
VDR - Voltage-dependent resistors
12. standard disc types with leads ..... E77
13. standard disc types with a hole ..... E82
14. standard rod types ..... E83
15. small disc types for special purposes ..... E84
16. special disc types for contact protection ..... E85
17. asymmetric types ..... E86
LDR - Light-dependent resistors
18. type number $B 873103$ ..... E88
19. type number B873105 ..... E89
20. type number B873107 ..... E90

## General survey - CARBON RESISTORS



At the left, insulated carbon resistors; at the right high-stability types.
From top to bottom $0,125 \mathrm{~W}, 0,25 \mathrm{~W}, 0,5 \mathrm{~W}$, and $\mathbf{1 W}$ types.

Resistors of the cracked-carbon film construction have superior figures for stability of resistance, noise level and temperature coefficient as compared with resistors of carbon-composition construction.

Two classes of carbon resistors are available:

1. insulated types, resistance tolerance $5 \%, 10 \%$ power rating at $70^{\circ} \mathrm{C}: 0,1 \mathrm{~W}, 0,125 \mathrm{~W}, 0,25 \mathrm{~W}, 0,5 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{~W}$
2. high stability types, resistance tolerance $1 \%$
power rating at $70^{\circ} \mathrm{C}: 0,125 \mathrm{~W}, 0,25 \mathrm{~W}, 0,5 \mathrm{~W}, 1 \mathrm{~W}$

resistance range	tolerance   $(\%)$	power rating   at $70^{\circ} \mathrm{C}$   $(\mathrm{W})$	type number
insulated types			
$10 \Omega-10 \mathrm{M} \Omega$	$\pm 5, \pm 10$	0.10	B 830500
$1 \Omega-220 \mathrm{k} \Omega$	$\pm 5, \pm 10$	0.125	B 803104 N
$3.3 \Omega-10 \mathrm{M} \Omega$	$\pm 5, \pm 10$	0.25	B 803105
$10 \Omega-22 \mathrm{M} \Omega$	$\pm 5, \pm 10$	0.50	B 803106
$10 \Omega-22 \mathrm{M} \Omega$	$\pm 5, \pm 10$	1	B 803107
$10 \Omega-10 \mathrm{M} \Omega$	$\pm 5, \pm 10$	2	B 830508
high-stability types			
$10 \Omega-0.62 \mathrm{M} \Omega$	$\pm 1$	0.125	E 003 AB
$10 \Omega-1 \mathrm{M} \Omega$	$\pm 1$	0.25	$\mathrm{EOO} \mathrm{3AC}$
$10 \Omega-1.6 \mathrm{M} \Omega$	$\pm 1$	0.50	EOO 3 AD
$10 \Omega-1.6 \mathrm{M} \Omega$	$\pm 1$	1	E 003 AG

## CARBON RESISTORS - General survey

## Resistance ranges

E12 range; tolerance $\pm 10 \%$ (muitiplicand $0.1,10,100$, etc.)

$\mathrm{R}_{\text {nom }}(\Omega)$		10	12	15	18	22	27	33	39	47	56	68	82
code	$(\times 1)$	10 E	12 E	15 E	18 E	22 E	27 E	33 E	39 E	47 E	56 E	68 E	82 E
	$(\times 10)$	100 E	120 E	150 E	180 E	220 E	270 E	330 E	390 E	470 E	560 E	680 E	820 E
	$(\times 100)$	1 K	1 K 2	1 K 5	1 K 8	2 K 2	2 K 7	3 K 3	3 K 9	4 K 7	5 K 6	6 K 8	8 K 2
$(\times 1000)$	10 K	12 K	15 K	18 K	22 K	27 K	33 K	39 K	47 K	56 K	68 K	82 K	
$(\times 10000)$	100 K	120 K	150 K	180 K	220 K	270 K	330 K	390 K	470 K	560 K	680 K	820 K	
$(\times 100000)$	1 M	1 M 2	1 M 5	1 M 8	2 M 2	2 M 7	3 M 3	3 M 9	4 M 7	5 M 6	6 M 8	8 M 2	

E24 range; tolerance $\pm 5 \%$ (multiplicand $0.1,10,100$, etc.)

	$\mathrm{R}_{\text {nom }}(\Omega)$	10	11	12	13	15	16	18	20	22	24	27	30
code	$(\times 1)$	10 E	11 E	12 E	13 E	15 E	16 E	18 E	20 E	22 E	24 E	27 E	30 E
	$(\times 10)$	100 E	etc.										
	$\mathrm{R}_{\text {nom }}(\Omega)$	33	36	39	43	47	51	56	62	68	75	82	91
code	$(\times 1)$	33 E	36 E	39 E	43 E	47 E	51 E	56 E	62 E	68 E	75 E	82 E	91 E
	$(\times 10)$	330 E	etc. see E 12 range										

Colour code (insulated types only)


Insulation resistance: this is measured at $500 \pm 50 \mathrm{~V}_{\mathrm{dc}}$ for $1 \mathrm{~min} \pm 5 \mathrm{sec}$, in accordance with section: 2.4.2. of the IEC Publication No. 109.

Stability test: a direct voltage is applied in cycles of 90 min . on and 30 min . off, at an ambient temperature of $70 \pm 2^{\circ} \mathrm{C}$, throughout an endurance test of 42 days. The voltage applied is the maximum permissible voltage.
Damp-heat test (long-term exposure): the resistors are subjected to the test-C procedure of the IEC Publication No. 68. Insulated types for 21 days, high-stability types for 56 days.
Guarantees: $\Delta \mathrm{R}=1 \%$ for $\mathrm{R}_{\text {nom }}=\max .100 \mathrm{k} \Omega ; \Delta \mathrm{R}=2 \%$ for $\mathrm{R}_{\text {nom }}=$ between $100 \mathrm{k} \Omega$ and | $\mathrm{M} \Omega ; \Delta \mathrm{R}=3 \%$ for $\mathrm{R}_{\text {nom }}=$ beyond $1 \mathrm{M} \Omega$.

## B8 305, series - CARBON RESISTORS

INSULATED TYPES $0.1 \mathrm{~W}, 0.125 \mathrm{~W}, 0.25 \mathrm{~W}, 0.5 \mathrm{~W}, 1 \mathrm{~W}, 2 \mathrm{~W}$


$$
\begin{gathered}
\text { Noise at resistance values } \\
3.3 \Omega-1 \mathrm{M} \Omega: \leq 2 \mu \vee / \mathrm{V} \\
1 \mathrm{M} \Omega-10 \mathrm{M} \Omega:<3 \mu \vee / \mathrm{V} \\
10 \mathrm{M} \Omega-22 \mathrm{M} \Omega:<5 \mu \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

resistance range ${ }^{I}$	maximum dissipation		maximum continuous operating voltage (V) (d.c. or a.c.)	dimensions ( mm )			tolerance   (\%)	type number
	$\begin{gathered} 70^{\circ} \mathrm{C} 2 \\ (\mathrm{~W}) \end{gathered}$	$\begin{gathered} 40^{\circ} \mathrm{C}^{2} \\ (\mathrm{~W}) \end{gathered}$		$D_{\mathrm{Q}}^{\mathrm{max}}$	$L_{\text {max }}$	$\stackrel{d}{\varnothing}$		
$10 \Omega-120 \mathrm{k} \Omega$	0.1	0.2	100	1.6	7	0.4	$\pm 5$	B830500B/.
$10 \Omega-10 \mathrm{M} \Omega$							$\pm 10$	B830500A/...
$3.3 \Omega-220 \mathrm{k} \Omega$	0.125	0.25	250	2.5	9	0.6	$\pm 5$	B8031 04NB/ .
$1 \Omega-2.7 \mathrm{k} \Omega$							$\pm 10$	B8031 04NA/.
$10 \Omega-1 \mathrm{M} \Omega$	0.25	0.5	350	3.7	13	0.7	$\pm 5$	B8031 05B/..
3.3 $\Omega-10 \mathrm{M} \Omega$							$\pm 10$	B8031 05A/.
$10 \Omega-1.5 \mathrm{M} \Omega$	0.5	1.0	500	5.2	20	0.8	$\pm 5$	B8 $03106 \mathrm{~B} / \ldots$
$10 \Omega-22 \mathrm{M} \Omega$							$\pm 10$	B803106A/.
$10 \Omega-2.2 \mathrm{M} \Omega$	1	1.5	750	6.8	28	1.0	$\pm 5$	B8031 07B/...
$10 \Omega-22 \mathrm{M} \Omega$							$\pm 10$	B803107A/...
$10 \Omega-10 \mathrm{M} \Omega$	2	3	1000	9.3	39	1.0	$\pm 5$	B830508B/...
$10 \Omega-10 M \Omega$							$\pm 10$	B830508A/.

Values: tolerance $\pm 5 \%$ E 24 series; tolerance $\pm 10 \%$ E 12 series; ${ }^{2}$ ambient temperature.

general data	dissipation					
	0.1W	0.125 W	0.25W	0.5 W	1 W	2W
critical resistance ${ }^{(\Omega)}$	100		490	500	560	500
insulation resistance ( $\times 1000 \mathrm{M} \Omega)$	50	50	1000	1000	1000	20
stability after 2000 hours ( 4 R at $\mathrm{P}_{\text {nom }}$ ) (\%)	1	3	4	4	6	6
maximum rise in surface temperature at $\mathrm{P}_{\text {nom }}{ }^{\circ}$ ( ${ }^{\circ} \mathrm{C}$ )	30	30	30	55	70	85

Derating curves (power rating as a function of ambient temperature)
0.1 W
$0.125 / 0.25 / 0.5 \mathrm{~W}$
1 and 2 W


## CARBON RESISTORS - B8 405 series

STAND-UP TYPE 0.125W


The properties are the same as for type B8031 04NB/...

resistance   range 1	max. dissipation at	maximum   continuous   operating vol-	tolerance	type number	
	$70^{\circ} \mathrm{C}^{2}$   $(W)$	$40^{\circ} \mathrm{C}^{2}$   $(W)$	(d.c. or a.c.)   $(\mathrm{V})$	$\%$	
	0.125	0.25	250	$\pm 5 \%$	$\mathrm{~B} 840504 \mathrm{~B} / \ldots$

${ }^{1}$ Values E 24-series; ${ }^{2}$ ambient temperature.

# CARBON RESISTORS - B8 30631 series 

WITH TANGENTIAL LEADS - 0.1W


The properties are the same as for type B830500A/... (see preceding page)

resistance   range 1	max. dissipation at	maximum   continuous   operating vol-	tolerance	type number
	$70^{\circ} \mathrm{C}^{2}$   tage (d.c. or a.c.)   $(\mathrm{W})$	$40^{\circ} \mathrm{C}^{2}$   $(\mathrm{~W})$	(V)	
$10 \Omega-10 \mathrm{M} \Omega$	0.1	0.2	100	10

[^32]
## E011 series - CARBON RESISTORS

## INSULATED PIN-HEAD TYPES 0.05 W



Noise: $<10 \mu \mathrm{~V} / \mathrm{V}$
This resistor is as small as a pin's head; it consists of a pellet of carbon composition which ensures a high reliability; its stability, however, is less favourable than that of our cracked-carbon standard resistors; main application in miniature apparatus, such as hearing aids, small-distance calling sets, weather radio-probes, etc.

resistance range ${ }^{1}$	maximum   dissipation   at $70^{\circ} \mathrm{C}^{2}(\mathrm{~W})$	max. continuous   operating voltage   (d.c. or a.c.) $(V)$	tolerance   $\%$	type number
$47 \Omega-120 \mathrm{k} \Omega$	0.05	50	$\pm 20$	$\mathrm{E} 011 \mathrm{AB} / \mathrm{P}$

Values E12 series; ${ }^{2}$ ambient temperature.

Derating curve


Resistance variation after 1000 hours: $1 \mathrm{R}<10 \%$ After moisture test I.E.C., publication 68, test C (21 days exposure to damp heat at $40^{\circ} \mathrm{C}$ and a relative humidity of $90-95 \%$ without drying). J $R<10 \%$

## CARBON RESISTORS - E003 series

HIGH STABILITY TYPES - 0.125W, 0.25W, 0.5W, 1 W


Noise max. $0.5 \mu \mathrm{~V} / \mathrm{V}$;
at resistance values
beyond $150 \mathrm{k} \Omega$ for E003AB-E003AC: max. $1 \mu \mathrm{~V} / \mathrm{V}$
beyond $470 \mathrm{k} \Omega$ for E003AD-E003AG; $\max .1 \mu \mathrm{~V} / \mathrm{V}$


resistance range ${ }^{1}$	maximum dissipation at $70^{\circ} \mathrm{C}^{3}$ (W)	maximum continuous operating voltage d.c.or a.c.(V)	dimensions (mm)			tolerance (\%)	type number
			$\underset{\varnothing}{D_{\max }}$	$L_{\text {max }}$	$\begin{aligned} & d \\ & 0 \end{aligned}$		
$10 \Omega-620 \mathrm{k} \Omega$	0.125	350	3.9	13	0.7	$\pm 1$	E003AB/D...
$10 \Omega-1 \mathrm{M} \Omega$	0.25	500	5.2	20	0.8	$\pm 1$	E003AC/D...
$10 \Omega-1.6 \mathrm{M} \Omega$	0.5	750	6.8	28	1.0	$\pm 1$	E003AD/D...
$10 \Omega-1.6 \mathrm{M} \Omega$	1.0	1000	9.3	39	1.0	$\pm 1$	E003AG/D...

1 Values E24 series; ${ }^{2}$ ambient temperature

Derating curve (power rating as a function of ambient temperature)


general data	dissipation			
	0.125 W	0.25W	0.5W	1W
insulation resistance ( $\times 100 \mathrm{M} \Omega$ ) .   stability (after 1000	1000	1000	1000	20
hours) $\Delta \mathrm{R}$ at $\mathrm{P}_{\text {nom }}=$ $\max .91 \mathrm{k} \Omega$. (\%)	0.5	0.5	1	1
$\triangle \mathrm{R}$ at $\mathrm{P}_{\text {nom }} \mathrm{min} .100$				
$k \Omega$. . . (\%) maximum rise in surface temperature at	1	1.5	1.5	2
$\mathrm{P}_{\mathrm{nom}}$. . . $\left({ }^{\circ} \mathrm{C}\right)$	15	30	35	40

## CONFORM MIL-R-10509E - RN60 - RN65 - RN70




Noise: less than $0.5 \mu \mathrm{~V} / \mathrm{V}$
Stability: after 1000 hours of loading at $P_{\text {nom }}$ at an ambient temperature of $125^{\circ} \mathrm{C}$, the resistance variation is max. $\pm 0.5 \%$

resistance range	maximum dissipation at:		dimensions (mm)			tol.$(\%)$	$\begin{gathered} \text { type } \\ \text { number } \end{gathered}$
	$125^{\circ} \mathrm{C}$ (W)	$75^{\circ} \mathrm{C}$   (W)	$D_{\text {max }}$   (D)	$L_{\text {max }}$	$\begin{gathered} d \\ (\varnothing) \end{gathered}$		
$49.9 \Omega-499 \mathrm{k} \Omega$	0.125	0.25	3.9	11.15	0.6	1	RN60E/...F
49.9 $\mathrm{S}^{-499 \mathrm{k} \Omega}$	0.125	0.25	3.9	11.15	0.6	0.5	RN60E/...D
49.9 - $499 \mathrm{k} \Omega$	0.125	0.25	3.9	11.15	0.6	0.25	RN60E/...C
49.9 - 499k $\Omega$	0.125	0.25	3.9	11.15	0.6	0.1	RN60E/... B
49.9 - 1M $\Omega$	0.25	0.5	5.8	16.7	0.6	1	RN65E/...F
49.9 - 1M $\Omega$	0.25	0.5	5.8	16.7	0.6	0.5	RN65E/...D
49.9S-1M $\Omega$	0.25	0.5	5.8	16.7	0.6	0.25	RN65E/...C
49.9 - 1MS	0.25	0.5	5.8	16.7	0.6	0.1	RN65E/...B
24.9 2 - $1 \mathrm{M} \Omega$	0.5	1	8.1	20.6	0.8	1	RN70E/...F
$24.9 \Omega-1 \mathrm{M} \Omega$	0.5	1	8.1	20.6	0.8	0.5	RN70E/...D
$24.9 \Omega-1 \mathrm{M} \Omega$	0.5	1	8.1	20.6	0.8	0.25	RN70E/...C
24.9 2 - $1 \mathrm{M} \Omega$	0.5	1	8.1	20.6	0.8	0.1	RN70E/...B



All RN..E resistors have a temperature coefficient of $\pm 25$ ppm. They are also available with a temperature coefficient of $\pm 50 \mathrm{ppm}(\mathrm{RN} . \mathrm{C} / \ldots$ ) and with a temperature coefficient of $\pm 100 \mathrm{ppm}(\mathrm{RN} . \mathrm{A} / \ldots)$.
The RN. A series with a temperature coefficient of 100 ppm are only available in tolerances of $1 \%$ (F) or $0.5 \%$ (D).

## CHARACTERISTICS CONFORM MIL-R-10509E-RN60



Noise level less than $0.1 \mu \mathrm{~V} / \mathrm{V}$


Properties and dimensions are identical to those of the metal-film resistors RN60E/.... These resistors have been developed to be used as a complement to the metal-film series as regards the low-ohmic values.

resistance range	maximum dissipation at :		dimensions (mm)			tol.$(\%)$	type number
	$125^{\circ} \mathrm{C}$   (W)	$\begin{gathered} 75^{\circ} \mathrm{C} \\ (\mathrm{~W}) \end{gathered}$	$D_{\varnothing}^{\max }$	$L_{\text {max }}$	$\begin{aligned} & d \\ & \varnothing \end{aligned}$		
$1 \Omega-50 \Omega$	0.125	0.25	3.9	11.15	0.6	1	E114EB/F...
$1 \Omega-50 \Omega$	0.125	0.25	3.9	11.15	0.6	0.5	E114EB/D..
10S-50 2	0.125	0.25	3.9	11.15	0.6	0.25	E114EB/C...
$50 \Omega-50 \Omega$	0.125	0.25	3.9	11.15	0.6	0.1	E114EB/B...



## 8351 series - WIRE-WOUND RESISTORS

## PRECISION TYPES - 0.4W, 0.6W, 0.7W, 1.2W, 1.8W



These small low-power resistors are eminently suitable for applications requiring dependable, accurate and highly stable resistances, as e.g. in telecommunication installations, measuring apparatus and other professional equipment. They are particularly suited for use in low-frequency filters. Owing to their lightness, the resistors can be mounted in the wiring of the apparatus. The resistors are tropic proof, and are coated by a red lacquer.

resistance range ${ }^{1}$	maximum dissipationat $40^{\circ} \mathrm{C}^{2}$ (W)	maximum dimensions ( mm )			tolerance (\%)	type number
		L	D	d		
1 $2-3200 \Omega$	0.4	13	4	0.8	$\pm 0.25$$\pm 0.5$	83510./.
3, $2-6800 \Omega$ )	0.6	19	5	0.8		83511./...
$2.2 \Omega-12000 \Omega$	0.7	28	5	0.8		83512./...
$18 \Omega-33000 \Omega$	1.2	43	7	1		83513./...
27 $\Omega$-56000 $\Omega$	1.8	67	7	1		83514./...

${ }^{1}$ E24 series; ${ }^{3}$ ambient temperature

dissipation	temperature coefficient	
(W)	$-25 \times 10^{-6} /{ }^{\circ} \mathrm{C}$	$+25 \times 10^{6} /{ }^{\circ} \mathrm{C}$
0.4	$1-250$	$251-3200$
0.6	$3-670$	$671-7000$
0.7	$6-1340$	$1350-12500$
1.2	$17-3650$	$3660-33000$
1.8	$25-6300$	$6310-57000$

## Stability.

After 1000 hours of continuous loading at $W_{\text {max }}$ at an ambient temperature of $40^{\circ} \mathrm{C}$, the resistance variation is max. $\pm 0.25 \%$, even under adverse climatic conditions.
Minimum permissible temperature $-55^{\circ} \mathrm{C}$

Derating curve (power rating as a function of ambient temperature)

Composition of the type number
83510 / $\ldots$ tolerance 4 - $\mid \longrightarrow$ resistance value $F= \pm 0.25 \%$ $E= \pm 0.5 \%$


## WIRE-WOUND RESISTORS - 8354 series

BROWN ENAMELLED TYPES - 5.5W, 8W, 10W. 16W


These light-weight, brown enamelled, wire-wound resistors have been designed with the main object of obtaining maximum reliability and great mechanical strength. As a consequence of their small dimensions, these resistors can be mounted in the wiring of the apparatus. The resistors are tropic proof.


resistance range ${ }^{1}$	maximum dissipation ${ }^{2}$ at $40^{\circ} \mathrm{C}(\mathrm{W})$	maximum permissible voltage (V)	maximum dimensions (mm)		tolerance   (\%)	type number
			diam.	max		
4.7 $\Omega-180 \Omega$	5.5	400	8	19	$\pm 10$	83540A/...
$200 \Omega-15 \mathrm{k} \Omega$	5.5	400	8	19	$\pm 5$	83540B/...
$4.7 \Omega-47 \Omega$	8	725	8	28	$\pm 10$	83541A/...
$51 \Omega-33 \mathrm{k} \Omega$	8	725	8	28	$\pm 5$	83541B/...
$10 \Omega-56 \mathrm{k} \Omega$	10	1050	8	42	$\pm 10$	83542B/...
$15 \Omega-100 \mathrm{k} \Omega$	16	1800	8	65	$\pm 5$	83543B/...

${ }^{1}$ Tolerance $\pm 5 \%$ : E24 series; ${ }^{2}$ tolerance $\pm 10 \%$ : E12 series; ambient temperature



Permissible load
For resistors mounted horizontally in a free space without draught and with a temperature of $40^{\circ} \mathrm{C}$, the temperature rise is max. $330^{\circ} \mathrm{C}$ when being loaded at $\mathrm{W}_{\text {max }}$.

Permissible temporary overloads:
$2 \mathrm{~W}_{\max }$ for 15 minutes;
$10 \mathrm{~W}_{\text {max }}$ for 10 seconds.
Minimum permissible temperature: $-55^{\circ} \mathrm{C}$
Temperature coefficient: -50 to $+140 \times 10^{-8} \Omega$ per ohm and per ${ }^{\circ} \mathrm{C}$. This amounts to a change of the resistance between -0.5 and $+1.4 \%$ per $100^{\circ} \mathrm{C}$ temperature rise

Derating curve: see figure.
The resistors can be mounted with the aid of mounting brackets or be connected to the wiring.

## E112 series - WIRE-WOUND RESISTORS

## GREEN CEMENTED TYPE 5W - 8W



Because of their small dimensions these load resistors are very suitable to be included in the wiring of electric and electronic apparatus, e.g. in T.V. sets.
The cement protection is non-inflammable.


resistance range	maximum dissipation at $40^{\circ} \mathrm{C}(\mathrm{W})$	maximum dimensions (mm)				$\begin{aligned} & \text { tol. } \\ & \% \end{aligned}$	type number
		$\underset{\varnothing}{D_{\max }}$	$L_{\text {tot }}$	$L_{\text {max }}$	$\begin{aligned} & d \\ & 0 \end{aligned}$		
6.8, - $27 \Omega$	8	7	30	25	1	10	E112AA/A.
$30 \Omega-10 \mathrm{k} \Omega$	8	7	30	25	1	5	E112AA/B.
5.6 $\Omega-47 \Omega$	5	5	22	17	0.8	10	E112AB/A.
$56 \Omega-4.7 \mathrm{k} \Omega$	5	5	22	17	0.8	5	E112AB/B.


$\Delta \mathrm{T}$ - curve


## WIRE-WOUND RESISTORS E108AA-series (tentative)

## Derating

curve
ambient temp $\left({ }^{\circ} \mathrm{C}\right)$

## LOW-OHMIC, GLASS SEALED - 1W

(see also page E15)
These resistors have been specially developed for application in transistorized circuits with very low resistance values.


resistance range	maximum dissipation at $40^{\circ} \mathrm{C}(\mathrm{W})$	dimensions (mm)		tolerance \%	type number
		$D_{\text {max }}$	$L_{\text {max }}$		
$0.1 \Omega-6.8 \Omega$	1	2.25	24	10	E108AA/...

For derating curve and $\triangle \mathrm{t}$-curve see next page.

## WIRE-WOUND RESISTORS - B8 300 series

## GENERAL SURVEY

## Survey of adjustable and non-adjustable types

These green enamelled wire-wound resistors have been designed to obtain maximum reliability and great mechanical strength. They are made of top-grade materials and are subjected to severe tests. The resistors are tropic-proof; they are available in adjustable and non-adjustable versions, both with soldering taps or with screws on the side terminals. Climatic group number 55/155/56 according to IEC68.

Permissible voltage between resistor and metal mounting plate
Adjustable (with movable connecting strap) 10W-40W . . . . . . . . . . . . . . 1400 V for B8 30042 to B8 30045 $60 \mathrm{~W}-250 \mathrm{~W} . . .$. . . . . . . . . . . 1800 V for B830046 and B830047
Non-adjustable
8W-40W . . . . . . . . . . . . . 1100 V for B830031
1400 V for B830032 to B830035
60W-250W
1800 V for B830036 and B830037
2000 V for B830038 and B830039

Max. dissipation (see following pages)
Permissible temporary overloads: $2 \mathrm{~W}_{\text {max }}$ for 15 minutes, $10 \mathrm{~W}_{\text {max }}$ for 5 seconds.
Minimum permissible temperature: $-55^{\circ} \mathrm{C}$ (maximum dissipation at $40^{\circ} \mathrm{C}$ ambient temperature)
For resistors mounted horizontally in a free space without draught and with a temperature of $40^{\circ} \mathrm{C}$, the temperature rise is max. $330^{\circ} \mathrm{C}$ when being loaded at $\mathrm{W}_{\text {max }}$. For higher ambient temperature, see figure.

Temperature coefficient -50 to +140 $\times 10^{-6} \Omega$ per ohm and per ${ }^{\circ} \mathrm{C}$. This ${ }_{32}$ amounts to a change of the resistance 280 between $-0.5 \%$ and $+1.4 \%$ per 26 $100^{\circ} \mathrm{C}$ temperature rise.

## Mounting.

The resistors should preferably be mounted by means of a rod passed through the tube. Suspension to the terminals is permissible for 8 W types only.



Derating curve: see figure
(see also page E14)


WIRE-WOUND RESISTORS - E 108AA series


E15

## B8 300 series - WIRE-WOUND RESISTORS

## ADJUSTABLE TYPES

Maximum dissipation is only permissible if the full length of the resistance wire is used. If only part of it is used, the permissible load is a proportionate part of $W_{\max }$. For example, an adjustable resistor of $120 \Omega, 100 \mathrm{~W}$, of which only $90 \Omega$ is used, may be loaded up to $90 / 120 \times 100=75 \mathrm{~W}$.

10W, 16W. 25W, 40W - enamelled


The resistors are provided with soldering tags and an adjustable connecting strap.

resistance range ${ }^{1}$	maximum dissipation ${ }^{2}$ at $40^{\circ} \mathrm{C}$ (W)	dimensions ( mm )				tolerance (\%)	type number
		$L_{\text {max }}$	$L_{1}$	$D_{\text {max }}$	A		
1.2S-27 $\Omega$	10	42	29	11.5	17	$\pm 10$	B830042A/.
$30 \Omega-3300 \Omega$						$\pm 5$	B8 $30042 \mathrm{~B} / \ldots$
1.5 2 - $2.7 \Omega$	16	65	52	11.5	17	$\pm 10$	B8 30043A/...
$3 \Omega-6800 \Omega$						$\pm 5$	B8 $30043 \mathrm{~B} / \ldots$
$2.7 \Omega-15 \Omega$	25	65	52	16	18.5	$\pm 10$	B830044A/...
$16 \Omega-9100 \Omega$						$\pm 5$	B8 $30044 \mathrm{~B} / \ldots$
4.7 7 -18000 $\Omega$	40	103	89	16	19	$\pm 5$	B8 $30045 \mathrm{~B} / \ldots$

[^33]
# WIRE-WOUND RESISTORS - B8 300, B8 302 series 

## ADJUSTABLE TYPES

$60 \mathrm{~W}, 100 \mathrm{~W}, 160 \mathrm{~W}, 250 \mathrm{~W}$ - enamelled


The resistors are provided with screws on side terminals and an adjustable connecting strap For low-ohmic resistance values see B8 3024 .series

resistance   range ${ }^{1}$	maximum dissipation ${ }^{2}$ at $40^{\circ} \mathrm{C}$ (W)	dimensions (mm)				tolerance (\%)	type number
		$L_{\text {max }}$	$L_{1}$	$\mathrm{D}_{\text {max }}$	A		
$2.4 \mathrm{k} \Omega-24 \mathrm{k} \Omega$	60	103	78	32	30	$\pm 5$	B830046B/. .
$4.7 \mathrm{k} \Omega-47 \mathrm{k} \Omega$	100	165	138	32	30	$\pm 5$	B830047B/.
$7.5 \mathrm{k} \Omega-75 \mathrm{k} \Omega$	160	165	132	44	37	$\pm 5$	B830048B/.
$12 \mathrm{k} \Omega-130 \mathrm{k} \Omega$	250	256	222	44	37	$\pm 5$	B830049B/...

${ }^{1}$ Resistance values: E24 series: ${ }^{2}$ ambient temperature
$60 \mathrm{~W}, 100 \mathrm{~W}, 160 \mathrm{~W}, 250 \mathrm{~W}$-cemented


Properties of these resistors are similar to those of the enamelled types B83004.B/...

resistance range ${ }^{1}$	maximum dissipation ${ }^{2}$ at $40^{\circ} \mathrm{C}(\mathrm{W})$	dimensions (mm)				tolerance$(\%)$	type number
		$L_{\text {max }}$	$L_{1}$	$D_{\text {max }}$	A		
$3 \Omega-2.2 \mathrm{k} \Omega$	60	103	78	32	30	$\pm 5$	B8 302 46B/
$6.8 \Omega-4.3 \mathrm{k} \Omega$	100	165	138	32	30	$\pm 5$	B8 302 47B/.
$10 \Omega-6.8 \mathrm{k} \Omega$	160	165	132	44	37	$\pm 5$	E8 302 48B/
$16 \Omega-11 \mathrm{k} \Omega$	250	256	222	44	37	$\pm 5$	B8 302 49B/.

[^34]
## B8 300 series - WIRE-WOUND RESISTORS

## NON ADJUSTABLE TYPES

$8 \mathrm{~W}, 10 \mathrm{~W}, 16 \mathrm{~W}, 25 \mathrm{~W}, 40 \mathrm{~W}$-enamelled


The resistors are provided with soldering tags on the side terminals.

resistance range ${ }^{1}$	maximum dissipation ${ }^{2}$ at $40^{\circ} \mathrm{C}$ (W)	dimensions (mm)				tolerance(\%)	type number
		$L_{\text {max }}$	$L_{1}$	$\mathrm{D}_{\text {max }}$	A		
$1 \Omega-100 \Omega$	8	26	17	11.5	16.5	$\pm 10$	B830031A/.
110 2 - 6800!						$\pm 5$	B830031 B /
$1.2 \Omega-27 \Omega$	10	42	29	11.5	17	$\pm 10$	B830032A/...
30 $2-15000 \Omega$						$\pm 5$	B830032B/...
$1.5 \Omega-2.7 \Omega$	16	63	52	11.5	17	$\pm 10$	B830033A/...
$3 \Omega-33000 \Omega$						$\pm 5$	B8 30033B/.
2.7S-15	25	65	52	16	18.5	$\pm 10$	B830034A/...
$16 \Omega-47000 \Omega$						$\pm 5$	B830034B/...
$4.7 \Omega-82000 \Omega \mid$	40	103	89	16	19	$\pm 5$	B830035B/...

${ }^{1}$ Resistance values: E24 series colerance $\pm 5 \%$; tolerance E 12 series $\pm 10 \%$; ${ }^{2}$ ambient temperature

## WIRE-WOU ND RESISTORS - B8 300 B8 302 series

NON ADJUSTABLE TYPES
$60 \mathrm{~W}, 100 \mathrm{~W}, 160 \mathrm{~W}, 250 \mathrm{~W}$-enamelled


The resistors are provided with screws on the side terminals.

resistance range ${ }^{1}$	maximum	dimensions (mm)				tolerance(\%)	type number
	$\begin{gathered} \text { (W) } \\ \text { at } 40^{\circ} \mathrm{C} \end{gathered}$	$L_{\text {max }}$	$L_{1}$	$D_{\text {max }}$	A		
$2.4 \mathrm{k} \Omega-68 \mathrm{k} \Omega$	60	103	78	32	30	$\pm 5$	B830036B/.
$4.7 \mathrm{k} \Omega-120 \mathrm{k} \Omega$	100	165	138	32	30	$\pm 5$	B830037B/...
$7.5 \mathrm{k} \Omega-180 \mathrm{k} \Omega$	160	165	132	44	37	$\pm 5$	B8300 38B/...
$12 \mathrm{k} \Omega-330 \mathrm{k} \Omega$	250	256	222	44	37	$\pm 5$	B830039B/...

[^35]$60 \mathrm{~W}, 100 \mathrm{~W}, 160 \mathrm{~W}, 250 \mathrm{~W}$-cemented


Properties of these resistors are the same as those of B83003.B/...

resistance range ${ }^{1}$	maximum dissipation ${ }^{2}$   (W)   at $40^{\circ} \mathrm{C}$	dimensions (mm)				tolerance   (\%)	type number
		$L_{\text {max }}$	$L_{1}$	$D_{\text {max }}$	A		
$3 \Omega-2.2 \mathrm{k} \Omega$	60	103	78	32	30	$\pm 5$	B830236B/...
$6.8 \Omega-4.3 \mathrm{k} \Omega$	100	165	138	32	30	$\pm 5$	B830237B/...
$10 \Omega-6.8 \mathrm{k} \Omega$	160	165	132	44	37	$\pm 5$	B830238B/...
$16 \Omega-11 \mathrm{k} \Omega$	250	256	222	44	37	$\pm 5$	B830239B/...

[^36]
## CEMENTED SECTION TYPES, MADE TO CUSTOMERS SPECIFICATION $24-52 W$



These space-saving load resistors consist of a resistor body on which two or more (maximum nine) wire resistor elements can be wound, either separately or interconnected. They can be used to advantage in electric and electronic apparatus in which more than one load resistor is applied, e.g. in TV sets. The resistors must be loaded with at least $60 \%$ of the nominal load to protect them against humidity influences.
Features: low price, simple mounting, space saving, high permissible loading, non-inflammable.

Resistance values: minimum $3 \Omega$, maximum see table. Resistance tolerance $\pm 10 \%$.
Temperature coefficient -50 to $+160.10^{-6} / \mathrm{C}$


$$
\begin{aligned}
\mathrm{K}= & \text { normally } 4^{+0.5} \mathrm{~mm} \\
\mathrm{~L}= & \text { minimum } \quad 63 \mathrm{~mm} \\
& \text { maximum } \quad 140 \mathrm{~mm}
\end{aligned}
$$

maximum total resistance value ${ }^{1}$$(k \Omega)$	maximum permissible total load$P_{\max }{ }^{4}$		standard tube length (mm)	maximum number of sections
	version $R(W)^{3}$	version P(W)		
20	24	28	75	4
30	32	37	100	6
35	35	41	110	7
30	38	44	120	8
48	44	52	140	9

1 Maximum values to be obtained with standard tube lengths
2 $P_{\text {max }}$ is the maximum permissible cotal load with the resistor mounted horizontally by means of mounting supports and at an ambient temperature of $40^{\circ} \mathrm{C}$; ${ }^{3}$ preferred version

- Max. permissible overload: during 15 minutes $2 \times P_{\text {nom, during }} 10$ seconds $10 \times P_{\text {nom }}\left(P_{\text {nom }}\right.$ is the maximum permissible load of a section at an ambient temperature of $40^{\circ} \mathrm{C}$ ).


Temperature rise $\Delta T=f(P)$.


## WIRE-WOUND RESISTORS - B8 301 series

## CEMENTED SECTION TYPES, MADE TO CUSTOMERS SPECIFICATION

Two or more resistor elements are wound in one layer on a ceramic tube version $\mathbf{R}$ or $\mathbf{P}$ (see figure). The ends of the windings are provided with connecting tags. When the windings are interconnected a common tag is used between the two resistors concerned, functioning as a tapping. The windings are coated with a layer of green cement; the connecting tags are tinned.

The resistors can be mounted by means of a bolt or a tapped rod passed through the ceramic tube, or by means of mounting supports. Mounting supports for resistors of the R-version are available under type number B145513; supports for resistors of the P-version are not available.


## Composition of the type number

When ordering, please state:

1. basic type number B8301...
2. number of sections
3. resistance of each section
4. load $\mathrm{P}_{\text {nom }}$ of each section

5. interconnections, if required
6. version R or P

The resistor will be designed according to these data and with a minimum standard length (unless otherwise specified).

## E086 series - CARBON TRIMMING POTENTIOMETERS

## MINIATURE TRIMMER



This miniature version of the 0097 series will find its application mainly in transistorized equipment.
It is intended for pre-set resistance control with provision for re-adjustments, and has a high degree of reliability in spite of its small dimensions. Only one version is available, namely that for mounting on printedwiring boards.
The resistance values are between $100 \Omega$ and $1 \mathrm{M} \Omega$, the maximum permissible load at $40^{\circ} \mathrm{C}$ ambient temperature is $0.1 \mathrm{~W}(0.25 \mathrm{~W}$ for the E097 series).
The annular carbon track is riveted on a base plate of resin-bonded paper. The stop is formed by the terminal for the runner. Adjustment is done by means of a small screwdriver or trimming tool. The angle of rotation is $240^{\circ} \pm 5^{\circ}$. The terminals will fit a printed-wiring board with a pitch of 2.54 mm .

Resistance tolerance . . . . . . . . . . . . . . . . . . . $\pm 20 \%$
Resistance value as a function of the rotation angle . . . . . . . . . . . linear
Effective angle of rotation . . . . . . . . . . . . . . . . . . . $240^{\circ} \pm 10^{\circ}$
Maximum permissible load (of total resistance) at an ambient temperature of $40^{\circ} \mathrm{C}$. . 0.1 W

## CARBON TRIMMING POTENTIOMETERS - E086 series

MINIATURE TRIMMER


Permissibleambient temperature between -10 and $+70^{\circ} \mathrm{C}$ Humidity test at $R_{\text {nom }} \leqslant 2.2 \mathrm{k} \Omega$. . $\Delta \mathrm{R}<5 \%$
at $R_{\text {nom }} \geqslant 4.7 \mathrm{k} \Omega$. . $\Delta \mathrm{R}<25 \%$ test according to IEC, i.e. during 56 days at $40^{\circ} \mathrm{C}$, 90 to $95 \%$ relative humidity, loaded with $0.1 \mathrm{P}_{\text {nom }}$

Derating curve

$R_{\text {nom }}$	$\begin{gathered} R_{\mathrm{min}} \\ (\Omega) \end{gathered}$	$V_{\text {max }}$   (V)	$\begin{gathered} I_{8 \max } \\ (m A) \end{gathered}$	type number
$100 \Omega$	10	3.2	10	E086BC/100E
$220 \Omega$	10	4.5	7	/220E
$470 \Omega$	10	7	4.5	/470E
$1 \mathrm{k} \Omega$	20	10	3.2	/1k
$2.2 \mathrm{k} \Omega$	40	14	2.2	/2K2
$4.7 \mathrm{k} \Omega$	100	22	1.4	/4K7
$10 \mathrm{k} \Omega$	200	32	1.0	/10K
$22 \mathrm{k} \Omega$	400	45	0.7	/22K
$47 \mathrm{k} \Omega$	1000	70	0.45	/47K
$100 \mathrm{k} \Omega$	2000	70	0.32	/100K
220 k $\Omega$	4000	70	0.22	/220K
470 k $\Omega$	10000	70	0.22	/470K
$1 M \Omega$	20000	70	0.22	/1M

$\mathbf{R}_{\text {min }}$ is the remaining resistance at either end just before the slider shorts to the respective terminal. $V_{\max }$ is the max. voltage (d.c. or r.m.s.) permissable between the ends of the resistance element at $\mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$.
's max is the maximum permissible current through the slider contact.

## E097 series - CARBON TRIMMING POTENTIOMETERS

## STANDARD TRIMMER, SCREWDRIVER-OPERATED



These stable and reliable carbon trimming potentiometers of simple construction are particularly suitable for use in radio and television receivers, for preset resistance control, with facilities for casual adjustments.

The following versions are available:

1. type $\mathbf{A}$ - for direct mounting in the wiring;
2. type $C$ - for vertical mounting, 3 -pins (printed-wiring);
3. type D - for horizontal mounting, 3-pins (printed-wiring);
4. type E - for horizontal mounting, 3 tags fon enlarged base);

## Permissible load

Maximum 0.25 W at an ambient temperature of $25^{\circ} \mathrm{C}$, and maximum 0.15 W at $70^{\circ} \mathrm{C}$.
The voltages $\mathrm{E}_{\text {max }}$ corresponding with these loads at any actual resistance value can be found by means of the figure.

## Permissible temperature

The ambient temperature may lie between - 10 and $+70^{\circ} \mathrm{C}$.
Tolerance $\pm 20 \%$



Standard resistance values

value	code								
$100 \Omega$	100 E	$1 \mathrm{k} \Omega$	1 K	$10 \mathrm{k} \Omega$	10 K	$100 \mathrm{k} \Omega$	100 K	$1 \mathrm{M} \Omega$	1 M
$220 \Omega$	220 E	$2.2 \mathrm{k} \Omega$	2 K 2	$22 \mathrm{k} \Omega$	22 K	$220 \mathrm{k} \Omega$	220 K	$2.2 \mathrm{M} \Omega$	2 M 2
$470 \Omega$	470 E	$4.7 \mathrm{k} \Omega$	4 K 7	$47 \mathrm{k} \Omega$	47 K	$470 \mathrm{k} \Omega$	470 K	$4.7 \mathrm{M} \Omega$	4 M 7

## E088 series - SINGLE CARBON POTENTIOMETERS (16 mm)

## WITH OR WITHOUT SWITCH



The application of these potentiometers is volume and tone control in small-size battery-powered sets. Types are available for conventional panel mounting, and also for use on p.w. boards (with or without fixing nut). The potentiometers can be supplied with a reliable, single-pole rotary switch, which makes them particularly suitable for use in transistorised equipment.

## General Data




## Switches

Breaking capacity	$12 \mathrm{~A}_{\text {dc }}$
Switching angle	$24^{\circ} \pm 2^{\circ}$

E088......

$R_{\text {nom }}$	linear curve a code	logarithmic curve b code
$1 \mathrm{k} \Omega$	01	26
2.2 k ¢	02	27
$4.7 \mathrm{k} \Omega$	03	28
$10 \mathrm{k} \Omega$	04	29
$22 \mathrm{k} \Omega$	05	30
$47 \mathrm{k} \Omega$	06	07
$100 \mathrm{k} \Omega$	08	09
$220 \mathrm{k} \Omega$	10	11
$470 \mathrm{k} \Omega$	12	13
tapped	curve	code
$2+8 \mathrm{k} \Omega$	d	34
$4+16 \mathrm{k} \Omega$	d	25




Model with tap


Mounting holes

These single carbon potentiometers ( 23 mm outer diameter) are particularly suitable for use in military and industrial equipment. The type fulfils MIL-R 94-A and CCTU-05-01 requirements.
On request resistance values according to MIL-R-94-A can also be supplied.

Permissible load
linear potentiometer: $1 / 4 \mathrm{~W}$
logarithmic potentiometer: $1 / 8 \mathrm{~W}$.


Standard resistance values

$R_{\text {nom }}$	linear   curve $A$   code	logarithmic   curve $C$   code
$2.2 \mathrm{k} \Omega$ 02    10 $\mathrm{k} \Omega$ 04   22 $\mathrm{k} \Omega$ 05   $47 \mathrm{k} \Omega$ 06    100 $\mathrm{k} \Omega$ 08   220 $\mathrm{k} \Omega$ 10   470 $\mathrm{k} \Omega$ 12   1 $\mathrm{M} \Omega$ 15   $2.2 \mathrm{M} \Omega$ 18 13     16		



## SINGLE CARBON POTENTIOMETERS (23 mm) - E098 series

## WITH OR WITHOUT SWITCH



Circuit

G without switch


H with single-pole rotary switch rated $250 \mathrm{~V} / 0.5 \mathrm{~A}$


D with double-pole rotary switch, 26 mm Ø.
rated for $250 \mathrm{~V} / 1.5 \mathrm{~A}$


K with double-pole
push-pull switch
rated for $250 \mathrm{~V} / 1 \mathrm{~A}$
operating force 200 p

L with double-pole push-pull switch rated for $250 \mathrm{~V} / 2 \mathrm{~A}$ operating force $400 p$


## Composition of the type number

length	$\checkmark$		type
11 mm	00	A	
18 mm	00	B	
18 mm	18	F	
17 mm   30 mm   60 mm	$\begin{aligned} & 17 \\ & 30 \\ & 60 \end{aligned}$	C	
30 mm 60 mm	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	D	
30 mm 60 mm	30 60	E	

Standard resistance values



Characteristic curves of resistance between slider and left terminal ( $R_{s} / R_{\text {tot }}$ in \%) relative to angle of clockwise rotation.
Customer's values and curves can be made to order under certain conditions.

## WITH OR WITHOUT SWITCH



Tandem potentiometers are suitable for stereophonic recording and reproduction; the potentiometers ensure adequate equality of the two signals, both in volume and tone, within the range of from 1 k () to 2.2 MQ. Tandem potentiometers are composed of two single potentiometers which are ganged; their resistance values and gradings are as identical as possible.

Disparity of potentiometers with identical nominal values of $R_{1}$ and $R_{2}$ :
a. $R_{1}-R_{2}<25 \% R_{\text {nom }}$.
b. attenuation matching of ganged potentiometers:

the error is defined in $d B=20 \quad \log \frac{E}{U_{1}}-\log \frac{E}{U_{2}}$
for linear types:
from $10 \%-50 \%$ of $R_{\text {tot }}<2 \mathrm{~dB}$
from $90 \%-50 \%$ of $\mathrm{R}_{\text {tot }}<2 \mathrm{~dB}$
for logarithmic types: see table

	attenuation			
logarithmic	tap at $10 \% R_{\text {tot }}$	tap at $20 \% R_{\text {tot }}$	tap at $40 \% R_{\text {tot }}$	error
$0-20 \mathrm{~dB}$	$0-20 \mathrm{~dB}$	$0-20 \mathrm{~dB}$	$0-20 \mathrm{~dB}$	$<2 \mathrm{~dB}$
$20-30 \mathrm{~dB}$	$20-30 \mathrm{~dB}$	$20-30 \mathrm{~dB}$	$20-28 \mathrm{~dB}$	$<3 \mathrm{~dB}$
$30-40 \mathrm{~dB}$	$30-34 \mathrm{~dB}$	$30-34 \mathrm{~dB}$		$<4 \mathrm{~dB}$

Tandem potentiometers with identical values of $R_{1}$ and $R_{2}$ satisfy stereo requirements, except when $\mathrm{R}-1 \mathrm{k} \Omega$.


Mounting holes

## TANDEM CARBON POTENTIOMETERS ( 23 mm ) - E091 series

D with double-pole rotary switch ( 26 mm )

Standard resistance values

$R_{\text {nom }}$	linear curve a code	$\log$. curve $b$ code	$R_{\text {nom }}$ tapped and special types	curve	code
$1 \mathrm{k} \Omega$	01	26	$5+17 \mathrm{k} \Omega$	d	25
$2.2 \mathrm{k} \Omega$	02	27	$50+170 \mathrm{k} \Omega$	d	23
$4.7 \mathrm{k} \Omega$	03	28	$50+420 \mathrm{k} \Omega$	c	14
$10 \mathrm{k} \Omega$	04	29	$0.1+0.9 \mathrm{M} \Omega$	c	22
$22 \mathrm{k} \Omega$	05	30	$0.2+0.8 \mathrm{M} \Omega$	d	17
$47 \mathrm{k} \Omega$	06	07	$0.4+0.6 \mathrm{M} \Omega$	e	24
$100 \mathrm{k} \Omega$	08	09	$0.2+2.0 \mathrm{M} \Omega$	c	32
$220 \mathrm{k} \Omega$	10	11	$0.5+1.7 \mathrm{M} \Omega$	d	20
$470 \mathrm{k} \Omega$	12	13			
			$300 \Omega$	f	31
$1 \mathrm{M} \Omega$	15	16	$1 \mathrm{M} \Omega$	f	66
$2.2 \mathrm{M} \Omega$	18	19	$2.2 \mathrm{M} \Omega$	$f$	77


Spindle	$\nabla$	for reference curves see page E31	
length			type
18 mm	00	B	
18 mm	18	F	
17 mm   30 mm   60 mm	$\begin{aligned} & 17 \\ & 30 \\ & 60 \end{aligned}$	C	
30 mm 60 mm	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	D	
$\begin{aligned} & 30 \mathrm{~mm} \\ & 60 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 30 \\ & 60 \end{aligned}$	E	

## E090 series - TWIN CARBON POTENTIOMETERS (23 mm)

## WITH OR WITHOUT SWITCH



These twin potentiometers are composed of two individual types of the E098 series with coaxial spindles and meet the demand for controls with duplex knob operation.
Composition of the type number E 090C./.. $\mathbf{R}_{1}+\mathbf{R}_{2}$


H with 23 mm single-pole rotary switch


D with 26 mm double-pole rotary switch


$\nabla$			
	length (mm)		type
	$L_{1}$	$L_{2}$	
$\begin{aligned} & \mathbf{A A} \\ & \mathbf{A B} \\ & \mathbf{A C} \\ & \mathbf{A D} \end{aligned}$	$\begin{gathered} 20 \\ 32 \\ 47.5 \\ 77.5 \end{gathered}$	$\begin{gathered} 32.5 \\ 47.25 \\ 60 \\ 90 \end{gathered}$	
AE	20	32.5	
AF	32	47.25	

Position of flat sides (spindle in extreme anticlockwise position)


Without switch


With rotary switch: switch-off

## WIRE WOUND POTENTIOMETERS 1W - E199AA series



The resistor element is enclosed in a dust-proof casing of black synthetic resin.
\(\left.\begin{array}{lll}Permissible load . . . . . . \& 1 \mathrm{~W} at 40^{\circ} \mathrm{C} <br>

\& ambient temperature\end{array}\right\}\)| Resistance range . . . . . . | $1 \Omega-25 \mathrm{k} \Omega$ |
| :--- | :--- |
| Resistance tolerance . . . . . | $\mathrm{R}_{\mathrm{n}} \leq 50 \Omega \pm 10 \%$ |
|  | $\mathrm{R}_{\mathrm{n}}>50 \Omega \pm \pm 5 \%$ and $\pm 10 \%$ |
| Working temperature . . . . | $-10^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ |
| Test voltage between spindle |  |
| and contacts . . . . . . | $2000 \mathrm{~V}_{\mathrm{ac}}$ |
| Operating torque . . . . . | $30-100 \mathrm{gcm}$ |


mounting holes

Composition of the type number E199AA/


## E199AB series - WIRE-WOUND POTENTIOMETER 3W

## DUST PROOF TERMINALS UNDERNEATH



This dust-free sealed potentiometer type is most suitable for professional electric and electronic equipment where accurate and gradual resistance regulation and high stability are required.

Permissible load.

> 3 W at $40^{\circ} \mathrm{C}, 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$ ambient temperature
> $2.2 \Omega-22 \mathrm{k} \Omega$
> $\mathrm{R}_{\mathrm{n}} \leqslant 50 \Omega: \pm 10 \%$
> $\mathrm{R}_{\mathrm{n}}>50 \Omega: \pm 5 \%$ and $\pm 10 \%$
> $275^{\circ} \pm 10^{\circ}$

Resistance range.
Resistance tolerance
Effective angle of rotation.
Resistance value as a function of the rotation angle
linear within $\pm 2 \%$
Working temperature
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Test voltage between spindle and contacts.
$1000 \mathrm{~V}_{\mathrm{ac}}$
Operating torque . . . $\geqslant 200 \mathrm{gcm}$
End stop torque . . . . $\geq 10 \mathrm{kgcm}$
Service life . . . . . . min. 25,000 cycles

## Composition of the type number E199AB/.

spindle	
version	length $(\mathrm{mm})$
resistance	
tolerance	
A17	17
A30*	$\mathrm{A}=10 \%$
A60	30
B14	60

*Preferred

Example: resistance value $3.3 \mathrm{k} \Omega$, tolerance $10 \%$, screwdriver adjustment, type number E199AB/B14A3K3




DUST PROOF, SIDE TERMINALS


This dust-free sealed potentiometer type is most suitable for professional electric and electronic equipment where accurate and gradual resistance regulation and high stability are required.
Properties of this potentiometer are the same as those of type E199AB (see page E36).

Permissible load . . . . . .	3 W at $40^{\circ} \mathrm{C}, 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$
ambient temperature	




Composition of the type number E199BB/

*Preferred resistance values

## E196AA-series - WIRE-WOUND POTENTIOMETERS 3W

## HIGH-STABILITY TYPE



The use of high-quality material and gold-plated contacts for this potentiometer ensures a high stability

Permissible load . . .	$3 W$ at $40^{\circ} \mathrm{C}, 2 \mathrm{~W}$ at $70^{\circ} \mathrm{C}$
ambient temperature	



The dotted line indicates the permissible load of an insulated potentiometer.

Composition of the type number E199AA/.

spindle		Resistance tolerance$B= \pm 5 \%$	resistance value (ohm)					
		value	code	value	code	value	code	
version	length (mm)		3.3	3E3	100*	100E	2200*	2K2
			4.7*	$4 E 7$	150	150E	3300	3K3
A15	15		6.8	6E8	220*	220E	4700*	4K7
A20	20		$10^{*}$	10E	330	330E	6800	6K8
B 9	9		15	15E	470*	470E	10000*	10K
			22*	22E	680	680E	15000	15K
			33	33E	1000*	1K	22000**	22 K
			47*	47E				

[^37]
## WIRE-WOUND POTENTIOMETERS - E198 series

CEMENTED - 30W, 50W, 120W
Type number E198AB/ 30 W


Type number E198AC/ 50 W


Type number E198AE/ 120 W



## E198 series - WIRE-WOUND POTENTIOMETERS

## CEMENTED - 30W, 50W 120W

These cemented wire-wound potentiometers meet the severest requirements which may be imposed on variable power resistors under greatly divergent conditions.
resistance tolerance $\pm 10 \%$
resistance values . according to standard potentiometer
resistance range: $1-1.5-2-2.5-3.5-5-7.5-1$

resistance range $(\Omega)$	max. dissipation at $40^{\circ} \mathrm{C}$ ambient temperature (W)	maximum peak voltage ${ }^{1}$ (V)	angle of rotation   $\left({ }^{\circ}\right)$	weight   (g)	type number
1-7500	30	1250	270	60	E198AB/A36A/..
0.5-10000	50	1400	270	95	E198AC/A36A/..
0.75-10000	120*	1300	300	240	E198AE/A36A/.

i Maximum peak voltage between contacts and spinfle. 2 Higher powar types, up to 630 W , are available on request.

Mounting holes



	$d_{1} m m$	$d_{2} m m$	$K m m$
E198 AB/A36A	10.5	3.5	13.5
$\mathrm{AC} / \mathrm{A} 36 \mathrm{~A}$	10.5	4.8	20
$\mathrm{AE} / \mathrm{A} 36 \mathrm{~A}$	10.5	4.8	20

Loading at $W_{\text {max }}$ is only permissible if the full length of the resistance wire or ribbon is used. If only part of it is used, the permissible load is a proportional part of $W_{\text {max }}$.



Our range of NTC thermistors consists of the following types:

1. standard disc types series $B$;
2. miniature types;
3. standard disc types series E ;
4. indirectly heated types;
5. standard rod types;
6. special types for motor cars and household appliances;
7. mounted disc types;
8. special types for radio and television.

## STANDARD DISC TYPES SERIES B



In the course of 1966 the lead diameter will be increased to 0.6 mm .

$\mathrm{R}_{25}$	$B$-value at $25^{\circ} \mathrm{C}$	colour code   for types with leads			type number	
(1)	$\left({ }^{\circ} \mathrm{K}\right)$	1	II	III	without leads	with leads
2.2	$2650 \pm 5 \%$	red	red	gold	B832000P/2E2	B832001P/2E2
4	$2800 \pm 5 \%$	yellow	black	gold	$\mathrm{P} / 4 \mathrm{E}$	P/4E
6	$2800 \pm 5 \%$	blue	black	gold	P/6E	P/6E
8	$2900 \pm 5 \%$	grey	black	gold	P/8E	P/8E
10	$2950 \pm 5 \%$	brown	black	black	P/10E	P/10E
15	$3000 \pm 5 \%$	brown	green	black	P/15E	P/15E
33	$3250 \pm 5 \%$	orange	orange	black	P/33E	P/33E
50	$3300 \pm 5 \%$	green	black	black	P/50E	P/50E
130	$4400 \pm 5 \%$	brown	orange	brown	$\mathrm{P} / 130 \mathrm{E}$	P/130E
500	$5200 \pm 5 \%$	green	black	brown	P/500E	P/500E
1300	$5450 \pm 5 \%$	brown	orange	red	$\mathrm{P} / 1 \mathrm{~K} 3$	P/1K3

$$
\begin{aligned}
\mathrm{W}_{\max } & =1 \mathrm{~W} & & \text { dissipation constant approx. } 10 \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\max } & =120^{\circ} \mathrm{C} & & \text { time constant approx. } 60 \text { sec. }
\end{aligned}
$$

Tolerance $\pm 20 \% ; \pm 10 \%$ tolerance types also available.
For $\pm 10 \%$ types change $P$ of type number into $A$; an extra silver colour band is added for the $\pm 10 \%$ types with leads.
e.g. B832001 P/ ... is $\pm 20 \%$

B832001 A/... is $\pm 10 \%$ with extra silver colour band


Resistance/temperature characteristics

STANDARD DISC TYPES SERIES B


Cooling characteristics

Voltage/current characteristics


## STANDARD DISC TYPES SERIES E



These discs are extremely stable and can be tsed for critical professional and industrial applications.


Dimensions (mm)

type number	$D$	$H_{\max }$	$d$
$\mathrm{E} 213 \mathrm{BB} / \ldots$	$5 \pm 0.3$	5.5	$0.5(0.6)^{1}$
$\mathrm{E} 213 \mathrm{BC} / \ldots$	$9 \pm 0.3$	5.5	0.6
$\mathrm{E} 213 \mathrm{BD} / \ldots$	$16 \pm 1.0$	5.5	$0.6(0.8)^{1}$

I In the course of 1966.

Tentative data

$R_{25}$   $(\Omega)$	B-value at $25^{\circ} \mathrm{C}$   ( ${ }^{\circ} \mathrm{K}$ )	$\begin{aligned} & W_{\max } \text { at } \\ & 25^{\circ} \mathrm{C} a \mathrm{mb} \end{aligned}$   (W)	dissipation constant   (approx)   $\left(m W /{ }^{\circ} \mathrm{C}\right)$	timeconstant(approx)(sec)	colour code			type number
					1	11	III	
4.7	2625	0.6 W	6	25	yellow	violet	gold	E213 BB/P4E7
15	2825				brown	green	black	/P15E
47	3100				yellow	violet	black	/P47E
150	3150				brown	green	brown	/P150E
470	3450				yellow	violet	brown	/P470E
1500	3725				brown	green		/P1K5
4700	4050				yellow	violet		1P4K7
150	3425	1 W	10	55	brown	green	brown	E213BC/P150E
470	3650				yellow	violet	brown	/P470E
1500	4075				brown	green	red	/P1K5
4700	4250				yellow	violet		/P4K7
150	3900	1.5 W	13	120	brown	green	brown	E213BD/P150E
470	4200				yellow	violet	brown	/P470E
1500	3900				brown	green	red	/P1K5
4700	4200				yellow			/P4K7

[^38]

Resistance/temperature characteristics
0.6 W and 1 W series

Voltage/current characteristics

0.6 W series

1 W series


## STANDARD ROD TYPES



Dimensions (mm)

| type number | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B832007 | $3.2 \pm 0.5$ | $11 \pm 1$ | 0.4 | $31 \pm 3$ |
| B832008 | $4.7 \pm 0.5$ | $21 \pm 1$ | 0.8 | $33 \pm 3$ |
| B832009 | $6.2 \pm 0.5$ | $31 \pm 1$ | 0.8 | $34 \pm 3$ |

These rods are extremely stable and can be used for critical professional and industrial applications.

$R_{2 j}$   (k!)	$\begin{gathered} \text { B-value at } 25^{\circ} \mathrm{C} \\ \text { ambient } \\ \text { tolerance } \pm 5 \% \\ \left({ }^{\circ} \mathrm{K}\right) \end{gathered}$	$\begin{gathered} \hline W_{\max } \text { at } \\ 25^{\circ} \mathrm{C} \text { am- } \\ \text { bient } \\ \text { (W) } \end{gathered}$	dissipation constant approx.) $\left(m W /{ }^{\circ} \mathrm{C}\right)$	time constant (approx.) (sec)	colour code	type number
4.7	3250	0.6	5.5	28	orange	B832007P/4K7S
15	3550				green	115 KS
47	3925				blue	/47KS
150	4075				white	/150KS
4.7	3250	1.5	12	55	orange	B832008P/4K7S
15	3650				green	/15KS
47	4000				blue	147KS
150	4150				white	1150KS
4.7	3250	2.3	17	105	orange	B832009P/4K7S
15	3675				green	/15KS
47	4050				blue	/47KS
150	4200				white	/150KS

Standard tolerance $\pm 20 \% ; \pm 10 \%$ on request.
Maximum temperature: $150^{\circ} \mathrm{C}$
Stability: after 1000 hours at $\mathrm{W}_{\max } \mathrm{AR}<5 \%$ after 1000 hours at $2 / 3 W_{\max } \Delta \mathrm{R}<3 \%$

Remark
The present range supersedes the old range. The lower values ( $150 \Omega$ to $1500 \Omega$ ) are disc shaped. See standard disc types series E.

## STANDARD ROD TYPES

Resistance/remperature characteristics


B832007
B8 32008
B832009

Voltage/current characteristics B832007


B8 32008


B832009


## MOUNTED DISC TYPES

Standard discs, series B, soldered on a metal strip.

For simple mounting with nut and bolt, discs of the standard serias B are available soldered on a metal strip.

$R_{25}$	type number
$(\Omega)$	E201ZZ $/ 27$
$4 \pm 20 \%$	$/ 30$
$8 \pm 20 \%$	$/ 31$
$50 \pm 20 \%$	$/ 11$
$130 \pm 20 \%$	$/ 32$
$500 \pm 20 \%$	$/ 33$
$1300 \pm 20 \%$	

The resistance/temperature characteristics are the same as those of the standard discs B (see page E42).

## NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS - NTC

## MOUNTED DISC TYPES

Standard discs, series E, screw-mounted.


For insulated mounting and to ensure good thermal heat contact between NTC and chassis, the standard discs series E213BB/... with mounting stud is available.

$R_{25}$	type number
$(\Omega)$	E215AB/P4E7
4.7	$/ \mathrm{P} 15 \mathrm{E}$
15	$/ \mathrm{P} 47 \mathrm{E}$
47	$/ \mathrm{P} 150 \mathrm{E}$
150	$/ \mathrm{P} 470 \mathrm{E}$
470	$/ \mathrm{P} 1 \mathrm{K5}$
1500	$/ \mathrm{P} 4 \mathrm{~K} 7$

Standard tolerance $\pm 20 \% ; \pm 10 \%$ on request.
Maximum temperature . . . . . . $100^{\circ} \mathrm{C}$
$W_{\text {max }}$ at $25^{\circ} \mathrm{C}$ ambient . . . . . . . 0.5 W
Dissipation constant
approx. $9.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$;
when mounted on a heat sink
( $1 \mathrm{dm}{ }^{2}, 1.5 \mathrm{~mm}$. thickness) approx. $19 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Thermal time constant . . . . . . . . approx. 80 sec.;
when mounted on a heatsink
( $1 \mathrm{dm}^{2}, 1.5 \mathrm{~mm}$. thickness) approx. 18 sec .
Dielectric strength
min 100 V
Insulation resistance . . . . . . . . . $>100 \mathrm{M} \Omega$
Resistance/temperature characteristics as E213BB series (see page E44).

## MINIATURE TYPES



$$
\begin{aligned}
& W_{\max } . \quad 60 \mathrm{~mW} \\
& \mathrm{~T}_{\max } . \quad . \\
& \text { stability } . \quad . \quad . \quad . \quad . \quad 200^{\circ} \mathrm{C} \\
& \text { dissipation constant }
\end{aligned}
$$

$R_{25}$	B-value at $25^{\circ} \mathrm{C}$ ambient	colour code			type number
(Q)	( ${ }^{\circ} \mathrm{K}$ )	1	11	III	
1000	2350	brown	black	red	B832003P/1KS
1500	2450	brown	green	red	11K5S
2200	2600	red	red	red	/2K2S
3300	2775	orange	orange	red	/3K3S
4700	3650	yellow	violet	red	/4K7S
6800	3725	blue	grey	red	16K8S
10000	3800	brown	black	orange	/10KS
15000	3750	brown	green	orange	/15KS
22000	3800	red	red	orange	/22KS
33000	3750	orange	orange	orange	/33KS
47000	3800	yellow	violet	orange	147 KS
68000	3850	blue	grey	orange	168 KS
100000	3900	brown	black	yellow	1100 KS
150000	3975	brown	green	yellow	/150KS
220000	4075	red	red	yellow	/220KS
330000	4175	orange	orange	yellow	1330 KS
470000	4225	yellow	violet	yellow	1470 KS
680000	4300	blue	grey	yellow	1680KS

Standard tolerance $\pm 20 \%$ : $\pm 10 \%$ on request.

## NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS - NTC

Resistance/temperature characteristics for all miniature types



Voltage/current characteristics (B8 32003 types only)



## MINIATURE TYPES

More versions are available, all built around the NTC bead E209CE/P. The range of resistance values and the resistance temperature characteristics for all types are the same as for version B8 32003 P/...


E209CE/P. .
"Naked bead"


B8 32002/P
"Naked bead"

E205CE/P...
"Thermometer"



## E 214 AE/P...

"Micro thermometer"


Remark:
B-value tolerance for values lower than $4.7 \mathrm{k} \Omega$ is
$\pm 10 \%$ instead of $\pm 5 \%$.

## NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS - NTC



B832006P/...
"Vacuum gauge"


B8 320 04P/...
"Vacuum mounted"


Dissipation constant: $0.11 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$


## INDIRECTLY HEATED TYPES



This vacuum mounted indirectly heated thermistor is an improved version of the old type B832015P/3K3


## NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS - NTC



Resistance/temperature characteristic


## NTC - NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS



Resistance/power characteristic

Cooling characteristic



Response time characteristic ( $W_{\text {neater }}=30 \mathrm{~mW}$ )

INDIRECTLY HEATED TYPES


This indirectly heated thermistor is mounted in an air-filled metal casing. Compared with type E207AC/P3K3 it has a much higher heater power due to the higher dissipation constant; therefore the time constant, defined as per CCTU 11-01, is lower.


## NTC - NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS



Resistance/temperature characteristic

Voltage/current characteristics



Resistance/power characteristic



## SPECIAL TYPES FOR MOTOR CARS




Resistance/temperature characteristics

SPECIAL TYPES FOR RADIO AND TELEVISION


application	$R_{2 \overline{5}}$   ( $\Omega$ )	B at $25^{\circ} \mathrm{C}$ approx. ( ${ }^{\circ} \mathrm{K}$ )	$W_{\text {max }}$   (W)	normal operating conditions		dissipation constant   (approx.)   $\left(m W /{ }^{\circ} \mathrm{C}\right)$	type number
				(mA)	( $\Omega$ )		
compensation positive temperature coeff. of deflection coils	$1.1 \pm 20 \%$	2650	1	2200	0.15-0.25	14	B832020
	$32+30 \% /-20 \%$	4200	1	1000	0.7-1.1	14	B832030
	$6 \pm 20 \%$ *	2800	1	1000	$\sim 1$	10	B832001P/6E
	$10 \pm 20 \%$ *	2950	1	900	$\sim 1.1$	10	B832001P/10E
	$12 \pm 20 \%$	2950	1	800	$\sim 1.2$	10	B832001P/12E
	$15 \pm 20 \%$ *	3000	1	800	$\sim 1.2$	10	B832001P/15E
	$33 \pm 20 \%$ *	3250	1	700	$\sim 1.4$	10	B832001P/33E
protection of	$125 \pm 20 \%$	4300	2	800	2-4	18	BL 28
switch and Si-diode	$60 \pm 20 \%$	4300	2	1300	0.7-1.3	18	BL 39
heater chain protection	645-1210	3600	5	300	35-48	60	VA1015
	300-500	3700	2.5	300	25-32	30	VA1026
	800-1315	3800	2	200	36-52	16	VA1006
	2470-5370	4000	4	300	38-50	24	100102
	1750-3250	3000	3	100	200-250	20	100026/01
	6700-12600	3000	3	100	200-280	10	100092
shunt dial lamp	3870-7750	3000	3	200	60-90	10	83922

[^39]For dimensions and characteristics see following pages.

## SPECIAL TYPES FOR RADIO AND TV

Type number B8 32020


Lead diameter 0.6 mm in the course of 1966 .


Voltage/current characteristics


Resistance/temperature characteristic


## NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS - NTC

SPECIAL TYPES FOR RADIO AND TV


Type number B8 32030


Lead diameter 0.6 mm in the course of 1966.

Voltage/current characteristic


## NTC - NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS

## SPECIAL TYPES FOR RADIO AND TV

Type number B8 320 01P/...
For data see page E42.

Type numbers BL28 and BL39


Dimensions will be changed in the course of 1966.


Voltage/current characteristics


## SPECIAL TYPES FOR RADIO AND TV



Resistance/temperature characteristic


Type number VA1015



Voltage/current characteristic

Cooling characteristic

## SPECIAL TYPES FOR RADIO AND TV

Type number VA1026



Voltage/current characteristic


## Resistance/temperature characteristic




Resistance/temperature characteristic


Type number VA1006



Voltage/current characteristic

## NTC - NEGATIVE-TEMPERATURE-COEFFICIENT THERMISTORS

## SPECIAL TYPES FOR RADIO AND TV

Type number 100102



Voltage/current characteristic

Type number 100026/01



Voltage/current characteristic


Resistance/temperature characteristic


Resistance/temperature characteristic


Resistance/temperature characteristic


[^40]Type number 100092



Voltage/current characteristic

Type number 83922



Voltage/current characteristic

## PTC - POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS

The range of PTC thermistors consists of the following types:

1. standard discs $1 \mathrm{~W}, 40-50 \mathrm{~V}$;
2. standard discs $0.5 \mathrm{~W}, 25 \mathrm{~V}$;
3. special types.

## STANDARD DISCS $1 \mathrm{~W}, 40-50$ V SERIES



$\begin{gathered} R_{25} \\ \pm 15 \%(\Omega) \end{gathered}$	$R$ at other temp.		switch temp. ${ }^{1}$   (approx.)   $\left({ }^{\circ} \mathrm{C}\right)$	max. temp coeff. ( $\%{ }^{\circ} \mathrm{C}$ )	$\begin{gathered} V_{\max ^{2}} \\ (V) \end{gathered}$	colour code	type number
50	$100^{\circ} \mathrm{C}$	$3-20 \mathrm{k} \Omega$	+35	$+7$	40	red	E $220 \mathrm{ZZ} / 01$
30	$40^{\circ} \mathrm{C}$	$<90 \Omega$	$+50$	+15	50	orange	102
	$100^{\circ} \mathrm{C}$	$>10 \mathrm{k} \Omega$					
50	$60^{\circ} \mathrm{C}$	$<100 \Omega$	$+80$	+30	50	yellow	103
	$100^{\circ} \mathrm{C}$	$>1 \mathrm{k} \Omega$					
40	$\begin{array}{r} 95^{\circ} \mathrm{C} \\ 130^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & <80 \Omega \\ & >10 \mathrm{k} \Omega \end{aligned}$	+110	$+60$	50	green	104

[^41]Dissipation constant for all types approx. $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## Important.

The above resistance values are measured at 1.5 V . Higher voltages may yield different values due to self-heating and voltage-dependency.

## POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS - PTC

## STANDARD DISCS $1 \mathrm{~W}, 40-50 \mathrm{~V}$ SERIES

## Resistance/temperature characteristics




Voltage/current characteristics

## E220ZZ/01



## E220ZZ/02



## PTC - POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS

## STANDARD DISCS $1 \mathrm{~W}, 40-50 \mathrm{~V}$ SERIES

## Resistance/temperature characteristics




Voltage/current characteristics

## E220ZZ/03



## E220ZZ/04



## POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS - PTC

STANDARD DISCS $0.5 \mathbf{W}$, 25 V SERIES


$\begin{gathered} R_{2 \overline{0}} \\ \pm 30 \% \\ (\Omega) \end{gathered}$	$R_{125}$	$R_{\text {1óo }}$	```switch temp.' (approx.) ('C)```	max.   temp.   coeff.   $\left(\%{ }^{\circ} \mathrm{C}\right)$	$V_{\max }(V)$	colour   code	type number
60	$3 \mathrm{k} \Omega<\mathrm{R}<15 \mathrm{k} \Omega$		$+35$	+ 6	25	red	E220ZZ/11
50	$100 \mathrm{k} \Omega<\mathrm{R}<500 \mathrm{k} \Omega$		+ 50	+15	25	orange	/12
50	$50 \mathrm{k} \Omega<\mathrm{R}<500 \mathrm{k} \Omega$		$+80$	+25	25	yellow	113
50	-	$100 \mathrm{k} \Omega<\mathrm{R}<1.2 \mathrm{M} \Omega$	$+110$	+35	25	green	114

1 Defined as the temperature at which the resistance value is twice the value at $25^{\circ} \mathrm{C}$.
2 Breakdown voltage.
Dissipation constant for all types approx. $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.

## Important

The above resistance values are measured at 1.5 V . Higher voltages may yield different values due to self-heating and voltage-dependency.

## PTC - POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS

## STANDARD DISCS $0.5 \mathrm{~W}, 25 \mathrm{~V}$ SERIES

## Resistance/temperature characteristics




Voltage/current characteristics

## E220ZZ/11



E220ZZ/12


## POSITIVE-TEMPERATURE-COEFFICIENT THERMISTORS - PTC

STANDARD DISCS $0.5 \mathrm{~W}, 25 \mathrm{~V}$ SERIES

Resistance/temperature characteristics



Voltage/current characteristics

## E220ZZ/13



## E220ZZ/14



## SPECIAL TYPES



Special types for high voltage applications up to hundreds of volts or low Curie temperatures ( $t 0-40^{\circ} \mathrm{C}$ ) can be made on request. For use as a motor protection device types have been developed with a special insulation against high voltage.

A typical example is the E220ZZ/06 which is used as a current limiting device in telecommunication apparatus.


## VOLTAGE-DEPENDENT RESISTORS - VDR

The range of VDR resistors consists of the following types:

1. standard dise types with leads;
2. standard disc types with a hole;
3. standard rod types;
4. small disc types for special purposes;
5. special disc types for contact protection;
6. asymmetric types.

## STANDARD DISC TYPES WITH LEADS



Most types are lacquered, inpregnated and colour-coded. Only some of the most important types are mentioned in this survey. Special types can be made on request. Values preferable according to I.E.C.-E12 series.

Tolerances: normal tolerance on voltage $\pm 20 \%$; VDR's with a tolerance of $\pm 10 \%$ can also be supplied. For $\pm 10 \%$ tolerance change P of type number into $A$.
The lacquered $\pm 10 \%$ types have an extra silver colour band.
E.g. E299DD/P... : $\pm 20 \%$ tolerance on voltage

E299DD/A...: $\pm 10 \%$ tolerance on voltage and extra silver colour band

## STANDARD DISC TYPES WITH LEADS

Voltage/current characteristics, type E229DD


$\begin{gathered} 1 \\ (m A) \end{gathered}$	$\begin{gathered} E \\ (V) \end{gathered}$	$\beta$	$\begin{gathered} C \\ \text { (approx) } \end{gathered}$	$\begin{aligned} & I_{\max } \\ & (\mathrm{mm}) \end{aligned}$	colour code			type number
					1	11	III	
100	8	0.25-0.40	14	5	brown	brown	blue	E299DD/P116
100	10		18	5	brown	brown	grey	/P118
100	12		21	5	brown	red	black	/P120
10	8		25	5	red	brown	blue	/P216
10	10		32	5	red	brown	grey	/P218
10	12		40	5	red	red	black	/P220
10	15		48	5	red	red	red	/P222
10	18	0.21-0.35	57	5	red	red	yellow	/P224
10	22		60	5	red	red	blue	/P226
10	27		70	5	red	red	grey	/P228
10	33	0.18-0.25	85	5	red	orange	black	/P230
10	39		100	5	red	orange	red	/P232
10	47		130	5	red	orange	yellow	/P234
10	56		150	5	red	orange	blue	/P236
10	68		180	5	red	orange	grey	/P238
1	56	0.14-0.23	190	5	orange	orange	blue	/P336
1	68		230	5	orange	orange	grey	/P338
1	82	0.14-0.21	300	5	orange	yellow	black	/P340
1	100		350	5.5	orange	yellow	red	/P342
1	120		400	6	orange	yellow	yellow	/P344
1	150		500	6.5	orange	yellow	blue	/P346
1	180		600	7	orange	yellow	grey	/P348
1	220		750	7.5	orange	green	black	/P350
1	270		900	8	orange	green	red	/P352
1	330		1100	9	orange	green	yellow	/P354

## VOLTAGE-DEPENDENT RESISTORS - VDR

## STANDARD DISC TYPES WITH LEADS

Voltage/current characteristics, type E299DE


1	E		C			lour cod		
(mA)	(V)	$\beta$	(approx)	(mm)	1	II	III	r
100	8	0.25-0.40	14	5	brown	brown	blue	E299DE/P116
100	10		18	5	brown	brown	grey	/P118
100	12		21	5	brown	red	black	/P120
100	15		26	5	brown	red	red	/P122
10	10		32	5	red	brown	grey	/P218
10	12		40	5	red	red	black	/P220
10	15		48	5	red	red	red	/P222
10	18	0.21-0.35	57	5	red	red	yellow	/F224
10	22		60	5	red	red	blue	/P226
10	27		70	5	red	red	grey	/P228
10	33	0.18-0.25	85	5	red	orange	black	/P230
10	39		100	5	red	orange	red	/P232
10	47		130	5	red	orange	yellow	/P234
10	56		150	5	red	orange	blue	/P236
10	68		180	5	red	orange	grey	/P238
10	82	0.14-0.23	190	5	red	yellow	black	/P240
1	68		230	5	orange	orange	grey	1P338
1	82	0.14-0.21	300	5	orange	$y \in l l o w$	black	/P340
1	100		350	5.5	orange	yellow	red	/P342
1	120		400	6	orange	yellow	yellow	/P344
1	150		500	6.5	orange	yellow	blue	/P346
1	180		600	7	orange	yellow	grey	/P348
1	220		750	7.5	orange	green	black	/P350
1	270		900	8	orange	green	red	/P352
1	330		1100	9	orange	green	yellow	/P354

## VDR - VOLTAGE-DEPENDENT RESISTORS

## STANDARD DISC TYPES WITH LEADS

Voltage/current characteristics, type E299DG


$$
\begin{aligned}
\mathbf{W}_{\text {max }} & =2 \mathbf{W} \\
\mathbf{D}_{\max } & =27,5 \mathrm{~mm}
\end{aligned}
$$

1	E	$\beta$	C	$I_{\max }$		olour cod		r
(mA)	(V)	$\beta$	(approx)	(mm)	1	11	III	
100	8	0.25-0.40	14	5	brown	brown	blue	E299DG/P116
100	10		18	5	brown	brown	grey	/P118
100	12		21	5	brown	red	black	/P120
100	15		26	5	brown	red	red	/P122
100	18		32	5	brown	red	yellow	/P124
10	12		38	5	red	red	black	/P220
10	15		47	5	red	red	red	/P222
10	18	0.21-0.35	57	5	red	red	yellow	/P224
10	22		60	5	red	red	blue	/P226
10	27		70	5	red	red	grey	/P228
10	33	0.18-0.25	84	5	red	orange	black	/P230
10	39		97	5	red	orange	red	/P232
10	47		125	5	red	orange	yellow	/P234
10	56		140	5	red	orange	blue	/P236
10	68		175	5	red	orange	grey	/P238
10	82	0.14-0.23	170	5	red	yellow	black	/P240
10	100		210	5	red	yellow	red	/P242
10	120	$0.14-0.21$	250	5	red	yellow	yellow	/P244
10	150		320	5.5	red	yellow	blue	/P246
10	180		380	6	red	yellow	grey	/P248
1	150		450	6.5	orange	yellow	blue	/P346
1	180		540	7	orange	yellow	grey	/P348
1	220		660	7.5	orange	green	black	/P350
1	270		810	8	orange	green	red	/P352
1	330		980	9	orange	green	yellow	/P354

## VOLTAGE-DEPENDENT RESISTORS - VDR

STANDARD DISC TYPES WITH LEADS

Voltage/current characteristics, type E299DH


1	E		c	max		olour code		
(mA)	(V)	$\beta$	(approx)	(mm)	1	11	III	type number
100	8	0.25-0.40	14	5	brown	brown	blue	E299DH/P116
100	10		18	5	brown	brown	grey	/P118
100	12		21	5	brown	red	black	/P120
100	15		26	5	brown	red	red	/P122
100	18		32	5	brown	red	yellow	/P124
100	22		34	5	brown	red	blue	/P126
100	27		48	5	brown	red	grey	/P128
100	33	0.21-0.35	53	5	brown	orange	black	/P130
10	22		60	5	red	red	blue	/P226
10	27		70	5	red	red	grey	/P228
10	33	0.18-0.25	84	5	red	orange	black	/P230
10	39		97		red	orange	red	/P232
10	47		125	5	red	orange	yellow	/P234
10	56		140	5	red	orange	blue	/P236
11	68		175	5	red	orange	grey	/P238
10	82	0.14-0.23	170	5	red	yellow	black	/P240
10	100		210	5	red	yellow	red	/P242
10	120	0.14-0.21	250	5	red	yellow	yellow	/P244
10	150		320	5.5	red	yellow	blue	/P246
10	180		380	6	red	yellow	grey	/P248
10	220		460	6.5	red	green	black	/P250
10	270		550	7	red	green	red	/P252
1	220		660	7.5	orange	green	black	/P350
1	270		810	8	orange	green	red	/P352
1	330		980	9	orange	green	yellow	/P354

## VOLTAGE-DEPENDENT RESISTORS - VDR

## STANDARD DISC TYPES WITH A HOLE



For mounting purposes VDR's with a hole can be supplied.
The electrical characteristics of these VDR's are identical to those of the equivalent lacquered types.
The discs are markus with the type number suffix.

$\underset{(m A)}{1}$	$\begin{gathered} E \\ (V) \end{gathered}$	$\beta$	C (approx)	$W_{\max }$   (W)	dimensions (mm)		type number
					D	$d$	
10	27	0.21-0.35	70	2	25	6	E299AG/P228
10	39	0.21-0.30	100				/P232
10	56		150				/P236
10	82	0.14-0.23	170				/P240
10	120	0.14-0.21	250				/P244
10	180		400				/P248
1	180		600				/P348
1	270		800				/P352
10	22	0.21-0.35	70	3	40	10	E299AH/P226
10	33	0.18-0.25	90				/P230
10	47		120				/P234
10	68		180				/P238
10	100	0.14-0.23	200				/P242
10	150	0.14-0.21	300				/P246
10	220		500				/P250
1	220		700				/P350
1	330		1000				/P354

## VDR - VOLTAGE-DEPENDENT RESISTORS

STANDARD ROD TYPES

$\mathbf{W}_{\text {max }} \mathbf{0 . 7} \mathbf{W}$

$\begin{gathered} 1 \\ (\mathrm{~mA})^{1} \end{gathered}$	$\begin{gathered} E \\ (V)^{1} \end{gathered}$	tolerance	$\beta$	colour code	type number
10	470	$\pm 10 \%$	0.20-0.25	green	E298ED/A258
10	560	$\pm 10 \%$	0.18-0.23	blue	/A260
10	680	$\pm 10 \%$	0.18-0.23	violet	\|A262
10	910	$\pm 10 \%$	0.18-0.23	white	/A265
10	1200	$\pm 20 \%$	0.17-0.22	grey	/P268
10	1300	$\pm 10 \%$	0.16-0.21	red	/A269
1	300	$\pm 20 \%$	0.18-0.25	yellow	/P353
2	950	$\pm 10 \%$	0.16-0.21	black/blue	E298 ZZ/06

Measured under pulse conditions


Voltage/current characteristics

The characteristic of type E $298 \mathrm{ZZ} / 06$ can be compared with that of type E 298 ED/A269. The same holds for types E 298 ED/P353 and E 298 ED/A260.

## VDR - VOLTAGE-DEPENDENT RESISTORS

SMALL DISC TYPES FOR SPECIAL PURPOSES


For use in e.g. small battery motors (to protect the collector and to suppress interferences in radio and TV) type E297ZZ/01 has been developed which can be mounted in the rotor.

$$
\begin{aligned}
& \text { Data E297ZZ/01: } \\
& \text { current at } 6 \mathrm{~V}_{\mathrm{dc}} \leq 1 \mathrm{~mA} \\
& \text { current at } 25 \mathrm{~V}_{\mathrm{dc}} \geq 10 \mathrm{~mA} \\
& \mathrm{~W}_{\max } 0.1 \mathrm{~W}
\end{aligned}
$$

For use in colour television a special range of VDR dises has been developed:

Tentative data

$I$	$E$	tolerance	type number
$(\mathrm{mA})$	$(V)$	on voltage	
1	6	$\pm 20 \%$	E297 ZZ/02
1	9	$\pm 20 \%$	103
1	12	$\pm 15 \%$	104
1	15	$\pm 15 \%$	105
1	18	$\pm 12 \%$	106

## VOLTAGE-DEPENDENT RESISTORS - VDR

## SPECIAL DISC TYPES FOR CONTACT PROTECTION



## Colour code:

For all types:
colour band I is grey
colour band III is white
Colour band II indicates the last digit of the type number:
$0=$ black
$1=$ brown
$2=$ red
3 = orange
4 = yellow
$5=$ green
$6=$ blue

This range is specially developed for contact protection of relays in telephone exchanges. These VDR's are extremely stable and can stand current surges of decimals of Amps without changing their characteristics perccivably.
Two versions are available: the VAP-SF series without leads in a non-lacquered, fully impregnated version and the VAP-AF series with leads in a lacquered and also impregnated version. These resistors meet the severe specifications of official inspection offices for telephone equipment.

$\begin{gathered} V \\ (V) \end{gathered}$	$\begin{gathered} 1 \\ (m A) \end{gathered}$	$\begin{gathered} \left.V^{1}\right) \\ \text { (pulse) } \end{gathered}$	$\begin{gathered} \left.{ }^{11}\right) \\ (m A) \end{gathered}$	$\begin{aligned} & W_{\max } \\ & (\mathrm{W}) \end{aligned}$	diameter (D) (mm)	type number	
						without leads	with leads
48	$<0.5$	150	$>42$	1	17	VAP11SF 0	VAP11AF 0
48	$<0.9$	150	$>76$	1	17	1	1
48	$<1.7$	150	$>115$	1	17	2	2
48	$<3$	150	$>180$	1	17	3	3
48	$<5$	150	$>268$	1	17	4	4
48	$<9$	150	$>430$	1	17	5	5
48	$<15$	150	$>455$	1	17	6	6
48	$<0.5$	150	$>27$	0.4	12.5	VAP21SF 0	VAP21AF 0
48	$<0.9$	150	$>34$	0.4	12.5	1	1
48	$<1.7$	150	$>65$	0.4	12.5	2	2
48	$<3$	150	$>91$	0.4	12.5	3	3
48	$<5$	150	$>152$	0.4	12.5	4	4
48	$<1.7$	150	$>52$	0.25	9.5	VAP31SF 2	VAP31AF 2
48	$<3$	150	$>72$	0.25	9.5	3	3
48	$<5$	150	$>121$	0.25	9.5	4	4

[^42]
## VDR - VOLTAGE-DEPENDENT RESISTORS

## ASYMMETRIC TYPES



Based on a barrier-layer effect, the asymmetric voltage-dependent resistors differ in many aspects from the well-known voltage dependent resistors made of silicon carbide. Its characteristic is asymmetric; in the forward direction, the characteristic shows a very low $\beta$-value and C -value while in the reverse direction $\beta$ - and C -values are much higher. Its parallel capacitance in forward as well as in reverse direction is relatively high.
They can be used for instance for stabilisation of the supply current in transistorised battery receivers.

For the time being two types are available.
Tentative data

	at $T_{\text {amb }}=25^{\circ} \mathrm{C}$	type number		
		E295ZZ/01	E295ZZ/02 ${ }^{1}$	
forward	voltage at 1 mA   temp. coeff.   $\beta$	$\begin{aligned} & 1.0 \mathrm{~V} \pm 10 \% \\ & >-0.2 \% /{ }^{\circ} \mathrm{C} \\ & 0.05-0.08 \end{aligned}$	$\begin{aligned} & 1.35 \mathrm{~V} \pm 10 \% \\ & >-0.2 \% /{ }^{\circ} \mathrm{C} \\ & 0.06-0.09 \end{aligned}$	
	$\begin{array}{ll} \text { capacitance } \quad \text { at } 0 \mathrm{~mA} \\ \text { at } 5 \mathrm{~mA} \\ \text { max. permissible current } \end{array}$	$\begin{aligned} & \sim 0.15 \mu \mathrm{~F} \\ & \sim 10 \mu \mathrm{~F} \\ & 25 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & \sim 0.15 \mu \mathrm{~F} \\ & \sim 10 \mu \mathrm{~F} \\ & 20 \mathrm{~mA} \end{aligned}$	In the course of 1966 the colour code will be changed as follows:
reverse   direction	currentat 5 V   capacitance         at 0 V   at 5 Vmax. permissible voltage	$\begin{aligned} & <20 \mu \mathrm{~A} \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 0.05 \mu \mathrm{~F} \\ & 5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & <20 \mu \mathrm{~A} \\ & \sim 0.15 \mu \mathrm{~F} \\ & \sim 0.05 \mu \mathrm{~F} \\ & 5 \mathrm{~V} \end{aligned}$	E295ZZ/01: black and brown band   E295ZZ/02: black and red band

[^43]temperature range: -30 to $+70^{\circ} \mathrm{C}$
cathode is indicated by a white colour dot

## VOLTAGE-DEPENDENT RESISTORS - VDR

ASYMMETRIC TYPES

Voltage/current characteristics of the E295 series


Reverse direction


## LDR - LIGHT-DEPENDENT RESISTORS

## TYPE NUMBER B8 73103



Light-dependent resistors are virtually small photoconductive cells, encapsulated in glass and special synthetic resin, and provided with two tinned copper connecting leads ( $0.6 \varnothing \times 15 \mathrm{~mm}$ )



Resistance value as a function of light intensity

## Derating curve



A special version (LDR03/05) with a lower light value is also available.
Type number: B873103/05
Dark value: $\mathrm{R}_{\mathrm{D}} \geqslant 1 \mathrm{M} \Omega$ (measured after 30 sec . in total darkness)
Light value: $\mathrm{R}_{\mathrm{L}}<150 \Omega$
Other data and dimensions are the same as those of the LDR03

## LIGHT-DEPENDENT RESISTORS - LDR

TYPE NUMBER B8 73105


Like type B8 731 03, the LDR05 ( 8873105 ) is virtually a small photoconductive cell. However, it has a different shape and is substantially smaller and lighter. The cell is sealed by means of a special, plastic coating.

$$
\begin{aligned}
& \text { dark value . . . . } \mathrm{R}_{\mathrm{D}}=\min .10 \mathrm{M} \Omega \text { (measured after } 30 \mathrm{~min} \text {. in } \\
& \text { total darkness) } \\
& \text { light value . . . . . } \mathrm{R}_{\mathrm{L}}=75-300 \Omega \text { (measured at } 1,000 \text { lux) } \\
& \text { recovery rate . . . . . } v=\min .200 \mathrm{k} \Omega / \mathrm{sec} \\
& \text { (i.e. the resistance rise per second at falling } \\
& \text { light intensity) } \\
& \text { permissible voltage. . . } \mathrm{E}_{\text {max }}=150 \mathrm{~V}_{\text {peak }} \text { (provided that } \mathrm{W}_{\text {max }} \text { is not } \\
& \text { exceeded) } \\
& \text { ambient temperature. }-30 /+60^{\circ} \mathrm{C}
\end{aligned}
$$



Light value: $\mathrm{R}_{\mathrm{L}}<150 \Omega 2$
Other data and dimensions are the same as those of the LDR05
Important: Do not solder closer than 10 mm to the body. Complete soldering and handling instructions available on request.

## TYPE NUMBER B8 73107



The LDR07 is identical to the LDR05 but has no plastic casing. The cell is covered with a special lacquer.

> dark value . . . . . . $R_{\mathrm{D}}=\min .10 \mathrm{M} \Omega$ (measured after 30 min . in total darkness
> light value ..... $\mathrm{R}_{\mathrm{L}}=75-300 \Omega$ (measured at 1,000 lux)
> recovery rate . . . . . $\vee=$ min. $200 \mathrm{k} \Omega / \mathrm{sec}$.
> (i.e. the resistance rise per second at falling light intensity)
> permissible voltage. . . $E_{\text {max }}=150 \mathrm{~V}_{\text {peak }}$ (provided that $\mathrm{W}_{\text {max }}$ is not exceeded)
> ambient temperature . . $-30 /+60^{\circ} \mathrm{C}$

Important: Soldering and handling instructions available on request.


E90

Resistance value as a function of light intensity

Derating curve



Miscellaneous


」


## CONTENTS

Printed-wiring connectors ..... F 4
Connecting blocks ..... F 13
Control knobs. ..... F 15
Glass-to-metal seals ..... F 19
Screened plugs and sockets. ..... F 22
Tube sockets ..... F 24
IF coils ..... F 28
Miniature polarised relay ..... F 35
Loudspeakers ..... F 37
Quartz-crystal units ..... F 45
Audio transformers ..... F 66
Mains transformers ..... F 70
Variable transformers ..... F 71

## $0.2^{\prime}$ series - PRINTED-WIRING CONNECTORS

## TYPE F045



Other contact arrangements available on request.
Contact identification marks can be incorporated.

## PRINTED-WIRING CONNECTORS - 0.2" series

```
connector body
contact springs 1 }\mu\mathrm{ gold upon 5 }/\mu\mathrm{ nickel plated
moulded black synthetic resin
 phosphor bronze, bifurcated
contact termination soldering eyes
contact pitch 0.2" = 5.08 mm
contact resistance max. }8\textrm{m}\Omega\mathrm{ per contact (inclusive material resistance)
permissible current max. 5 A
board thickness 1/16"' (1.4-1.8 mm)
working voltage 1400 V (50 c/s)
working temperature -40 +100 }\mp@subsup{}{}{\circ}\textrm{C
insulation resistance min. 104 M\Omega
mounting on rails or panels
polarity accessories for polarised mounting, without loss of contact positions,
are available.
number of contacts, single sided max. }5
number of contacts, double sided max. 108
```


## Composition of the type number F045. C/0.

## Example:

The type number of a connector with 15 contacts, all singlesided, all with contact springs, is F045 AC/015.
$\left.\begin{array}{cc} & \\ \hline \text { Versions } & \text { number of positions } \\ \hline \text { single or double } \\ \text { sided }\end{array} \quad \begin{array}{c}\text { positions with contact } \\ \text { springs }\end{array}\right]$

## $0.156^{\prime \prime}$ series - PRINTED-WIRING CONNECTORS

## TYPE F047



number of contact springs per row	dimensions (mm)			
	a	$b$	$c$	$d$
06	46.2	38.9	31.8	27.80
10	62.1	54.8	47.7	43.63
15	82.0	74.7	67.6	63.45
18	93.9	86.6	79.5	75.34
22	109.8	102.5	95.4	91.14

## PRINTED-WIRING CONNECTORS - 0.156" series

TYPE F047


## Composition of the type number F047.C/0.

## Example:

The type number of a connector with 22 contacts, all double-sided, all with contact springs and plain mounting holes, is F047 BC/022.

Versions:	number of position		
single or double			
sided		$\quad$	mounting
:---:			
holes			

[^44]
## $0.15^{\prime \prime}$ series - PRINTED-WIRING CONNECTORS

## Type F046

## 


mounting bracket

## PRINTED-WIRING CONNECTORS - $\mathbf{0 . 1 5}{ }^{\prime \prime}$ series

Type F046

```
connector body
moulded black synthetic resin
contact springs
1 }\mu\mathrm{ gold upon 5 }\mu\mathrm{ nickel-plated phosphor bronze, bifurcated
contact termination open soldering lug
contact pitch 0.150" (}3.81\textrm{mm}\mathrm{)
contact resistance
max. 8 m\Omega (inclusive material resistance)
permissible current
max. 3 A
board thickness
1/1\mp@subsup{6}{}{\prime\prime}(0.055-0.071" or 1.4-1.8 mm)
working voltage
max. }354\mp@subsup{V}{\mathrm{ peak}}{
test voltage
1400V (50 c/s)
working temperature
-40%/+100 年
insulation resistance
min. 104 M\Omega
mounting
on mounting plates, brackets or rails by means of plastic brackets
polarity
accessories for polarised mounting, without loss of contact posi-
tions, are available.
number of contacts single sided . max. }4
number of contacts double sided . max. }9
```


## Composition of the type number F046.C/0.

*	single or double sided	positions with contact springs
A B C D	single   double   single   double	all   all   all but the two outermost all but the two outermost

## Example:

The type number of a connector with 31 contacts, all doublesided but for the two outermost ones, all with contact springs, is F046DC/033.

## $0.1^{\prime \prime}$ series - PRINTED-WIRING CONNECTORS

## Type F044




Type F044 AB for wire-wrap


Type F044 AC for soldering


Type F044AA for dip-soldering

## PRINTED-WIRING CONNECTORS - 0.1" series

Type F044

```
connector body moulded black synthetic resin
contact springs 1\mu gold upon nickel-plated phosphor bronze double wire springs,
 bridged
contact termination soldering eye, wire-wrap or dip solder pins
contact pitch 0.1" (2.54 mm)
contact resistance max. }8\textrm{m}\Omega\mathrm{ (inclusive material resistance)
permissible current max. }3\textrm{A
board thickness 1/16"' (1.4-1.8 mm)
working voltage max. }100\mp@subsup{V}{\mathrm{ peak}}{
test voltage }900\mp@subsup{V}{\mathrm{ peak (}}{00\textrm{c}/\textrm{s})
working temperature . . . }-4\mp@subsup{0}{}{\circ}/+7\mp@subsup{0}{}{\circ}\textrm{C
insulation resistance min. 104 M\Omega
mounting
a) on mounting plates, brackets or rails
b) on p.w. boards
polarity by inserting a key over a contact
mounting and polarizing accessoires are available.
number of contacts max. }3
```

Composition of the type number F044A. 10 .

## Example:

The rype number of a connector with 11 contact springs and wirewrap terminals is $\mathrm{F} 044 \mathrm{AB} / 013$.

v	kind of terminals	positions with contact springs
A	dip-solder wrip-wrap solder	all, but the two outermost

## $0.1^{\prime \prime}$ series - PRINTED-WIRING CONNECTORS

## TYPE ZE021




## MIDGET CONNECTING BLOCKS - 88029 series

These connecting blocks are used in apparatus and installations where high requirements are imposed both on the quality of the connection and on the appearance.


The 2 - to 12 -fold connecting blocks can be fixed on to a panel of any desired thickness by means of two screws 3 mm
permissible voltage,
contact clamps connected to the mains $500 \mathrm{~V}_{\text {peak }}$ contact clamps not connected to the mains . . . . . . . . . . $1000 \mathrm{~V}_{\text {peak }}$
mains voltage . . . . . . . . $250 \mathrm{~V}, 50 \mathrm{c} / \mathrm{s}$
permissible current . . . . . . . max. 25 A
permissible temperature . . . . $\max 70^{\circ} \mathrm{C}$
insulation resistance . . . . . . . $\geq 5000 \mathrm{M} \Omega$
parallel damping . . . . . . . . $\geq 2 \mathrm{M} \Omega$
capacitance between two arbitrary contact clamps . . . . . . . . . . ~5pF
Further details on request.

connecting   block	1   $(\mathrm{~mm})$	type   number
2-fold	32	$88029 / 02$
3-fold	38.5	$88029 / 03$
4-fold	45	$88029 / 04$
5-fold	51	$88029 / 05$
6-fold	58	$88029 / 06$
7-fold	64	$88029 / 07$
8-fold	71.5	$88029 / 08$
9-fold	78	$88029 / 09$
10-fold	84.5	$88029 / 10$
11-fold	91	$88029 / 11$
12-fold	97.5	$88029 / 12$
14-fold	97.5	$88029 / 14$


block body
contacts
permissible current
permissible voltage between adjacent contacts
test voltage
working temperature
insulation resistance .
capacitance between to arbitrary clamps:
moulded black synthetic resin nickel-plated brass clamps, insertion of connecting wire on one side, soldering connection on other side
max. 6 A
from mains: max. $354 \mathrm{~V}_{\text {peak }}$ from other sources: $630 \mathrm{~V}_{\text {peak }}$ $2000 \mathrm{~V}_{\mathrm{rms}}$ $-25^{\circ} /+70^{\circ} \mathrm{C}$ $\min$. 50.000 $\mathrm{M} \Omega$ approx. 5 pF

connecting block	$I(\mathrm{~mm})$	type number	order number
2-fold	32.5	$88073 / 02$	242201200406
3-fold	39	103	00506
4-fold	45.5	104	00606
5-fold	52	105	00706
6-fold	58.5	106	00806
7-fold	65	107	00906
8-fold	71.5	108	01006
9-fold	71.5	109	01091
10-fold	71.5	110	01005

Further details on request
The 2- to 8 -fold connecting blocks can be fixed on to a panel of any desired thickness by means of two screws $3 \mathrm{~mm} \varnothing$.


AA

These knobs have been specially designed for professional equipment. Their star feature is the fact that they are fixed by means of a clamping collet. This method renders it superfluous to machine the shaft; it greatly facilitates the fixing and removal of the knobs, and ensures a permanently reliable attachment.

Round knobs

outer diameter (mm)	height (mm)	spindle   o ( mm )	type number	spindle   © inch	type number
14	20.5	4	F111AA/14 $\times 4$	3/18	F111AA/14 $\times 1 / 10$
14	20.5	4	AB/14 $\times 4$	$9 / 16$	AB/14 $\times 3 / 10$
14	20.5	6	AA/14 $\times 6$	$\pm$	AA/14 $\times \frac{1}{4}$
14	20.5	6	AB/14 $\times 6$	$\frac{1}{4}$	AB/14 $\times \frac{1}{4}$
22	21	4	AA/22 $\times 4$	${ }^{9} / 16$	AA/22 $\times 3 / 16$
22	21	4	AB/22 $\times 4$	$3 / 10$	AB/22 $\times 3 / 16$
22	21	6	AA/22 $\times 6$	4	AA/22 $\times 4$
22	21	6	AB/22 $\times 6$	$\ddagger$	AB/22 $\times \frac{1}{4}$
22	21	6	AC/22 $\times 6$	$\frac{1}{4}$	AC/22 $\times \frac{1}{4}$
22	21	6	AD/22 $\times 6$	4	AD/22 $\times \frac{1}{4}$
22	21	6	AE/22 $\times 6$	4	AE/22 $\times \frac{1}{4}$
30	23	6	$A A / 30 \times 6$	4	AA/30 $\times \frac{1}{4}$
30	23	6	$A B / 30 \times 6$	$\pm$	$A B / 30 \times \frac{1}{4}$
30	23	6	AC/30 $\times 6$	4	AC/30 $\times \frac{1}{4}$
30	23	6	AD/30 $\times 6$	$\frac{1}{4}$	AD/30 $\times \frac{1}{4}$
30	23	6	AE/30 $\times 6$	$\frac{1}{4}$	AE/30 $\times \frac{1}{4}$
40	23	6	AA/40 $\times 6$	$\frac{1}{4}$	AA/40 $\times 1$
40	23	6	AB/40 $\times 6$	$\frac{1}{4}$	AB/40 $\times \ddagger$
40	23	6	AC/40 $\times 6$	$\frac{1}{4}$	AC/40 $\times \frac{1}{4}$
40	23	6	AD/40 $\times 6$	4	AD/40 $\times \frac{1}{4}$
40	23	6	AE/40 $\times 6$	$\frac{1}{4}$	AE/40 $\times \frac{1}{4}$
60	25.5	6	AA/60 $\times 6$	4	AA/60 $\times \frac{1}{4}$
60	25.5	6	$A B / 60 \times 6$	4	AB/60 $\times \frac{1}{4}$
60	25.5	6	AC/60 $\times 6$	$\pm$	AC/60 $\times \frac{1}{4}$
60	25.5	6	AD/60 $\times 6$	4	AD/60 $\times \frac{1}{4}$
60	25.5	6	AE/60 $\times 6$	4	AE/60 $\times \frac{1}{4}$
60	25.5	8	AA/60 $\times 8$	5110	AA/60 $\times 1 / 10$
60	25.5	8	$A B / 60 \times 8$	$3 / 18$	$\mathrm{AB} / 60 \times 5$
60	25.5	8	AC/60 $\times 8$	$5 / 16$	AC/60 ${ }^{\text {P/ }}$
60	25.5	8	AD/60 $\times 8$	$5 / 16$	$\mathrm{AD} / 60 \times \mathrm{B} / 18$
60	25.5	8	AE/60 $\times 8$	$5 / 16$	$\mathrm{AE} / 60 \times 5 / 18$
80	38.5	10	AA/80 $\times 10$	$\frac{3}{17}$	AA/80 $\times \frac{3}{6}$
80	38.5	10	AB/80 $\times 10$	3	$\mathrm{AB} / 80 \times \frac{1}{8}$
80	38.5	10	AC/80 $\times 10$	$\stackrel{3}{3}$	AC/80 $\times \frac{3}{8}$
80	38.5	10	AD/80 $\times 10$	$t$	AD/80 $\times$ 暑
80	38.5	10	AE/80 $\times 10$	3	AE/80 $\times$ 濐


$A C$


AD


AE


F111 series - CONTROL KNOBS

## BLACK

## Round knobs with crank

version	outer diameter (mm)	height   (mm)	spindle   $\varnothing$	type number
BA	40	40	$\frac{6}{4^{\prime \prime}} \mathrm{mm}$	$\begin{aligned} & \text { F111BA/40 } \times 6 \\ & \text { F111BA } / 40 \times \frac{1}{4} \end{aligned}$
BC	40	40	$\stackrel{1}{4}_{\frac{11}{\prime \prime}} \mathrm{~mm}$	$\begin{aligned} & \mathrm{F} 111 \mathrm{BC} / 40 \times 6 \\ & \mathrm{~F} 111 \mathrm{BC} / 40 \times \frac{1}{4} \end{aligned}$
BA	60	42	$\begin{aligned} & 6 \mathrm{~mm} \\ & 4^{\prime \prime} \end{aligned}$	$\begin{aligned} & \text { F111BA/60 } \times 6 \\ & \text { F111BA/60 } \times i^{-} \end{aligned}$
BC	60	42	$\frac{6}{\frac{1}{4}}{ }^{n}$	$\begin{aligned} & \text { F111BC/60 } \times 6 \\ & \text { F111BC/60 } \times \frac{1}{4} \end{aligned}$

## Vernier knobs

provided with	spindle   (   (mm)	type number	spindle   o   (inch)	type number
centre points.	6	$88150 / 00$	$4^{\prime \prime}$	$88150 / 10$
screws $-\quad$.	6	$88150 / 01$	$\frac{4^{\prime \prime}}{4}$	$88150 / 11$

Reduction drive 1:9.


## Switch knobs

version	max.   length (mm)	$\begin{aligned} & \text { height } \\ & \text { (mm) } \end{aligned}$	spindle	type number
CA	40	23	$6 \mathrm{~mm}$	$\begin{aligned} & \text { F111CA/40 } \times 6 \\ & \text { F111CA } / 40 \times 1 " \end{aligned}$
CA	60	25	$6 \mathrm{~mm}$	$\begin{aligned} & \text { F111CA/60 } \times 6 \\ & \text { F111CA/60 } \times \frac{1}{4} \end{aligned}$

## CONTROL KNOBS－F112 series

THREE DIFFERENT COLOURS


AA

$A B$


AC


AD

The control knobs series F112 have been designed for use with equipment in a great variety of classes． Among their main features we mention：
— modern styling；
－perfect mounting by means of clamping collet；
－available in black，grey or white．


Round knobs
DA

dia （mm）	height （mm）	spindle   0 （mm）	type number	spindle   g（inch）	type number ${ }^{\text {²}}$
10	13	3.2	F112 AA／－10 $\times$ ：	8	F112AA／－10 $\times \frac{1}{8}$
10	13	3.2	F112 AB／－10 $\times$ 者	$\frac{1}{8}$	F112AB $/-10 \times \frac{1}{6}$
10	13	4	F112AAI－10 $\times 4$		
10	13	4	F112 AB／－10 $\times 4$		
13	15	4	F112AAI－13 $\times 4$		
13	15	4	F112 AB／－13 $\times 4$		
13	15	4	F112AD／－13 $\times 4$		
13	15	6	F112AA／－13 $\times 6$	$\frac{1}{1}$	F112AA／－13 $\times 1$
13	15	6	F112 AB／－13 $\times 6$	$\frac{1}{4}$	F112AB／－13 $\times 1$
13	15	6	F112AD／－13 $\times 6$	$\frac{1}{4}$	F112AD／－13 $\times \frac{1}{4}$
17	16.5	4	F112AAI－17 $\times 4$		
17	16.5	4	F112 AB／－17 $\times 4$		
17	16.5	6	F112AA／－17 $\times 6$	4	F112AA／－17 $\times \frac{1}{4}$
17	16.5	6	F112 AB／－17 $\times 6$	$\frac{1}{4}$	F112AB／－17 $\times \frac{1}{4}$
$17^{2}$	15.3	6	F112DA／－17 $\times 6$		
22	17	4	F112AA／－22 $\times 4$		
22	17	4	F112 ABJ－22 $\times 4$		
22	21.5	4	F112AC／－22 $\times 4$		
22	21.5	4	F112AD $/-22 \times 4$		
22	17	6	F112AA／－22 +6	$\ddagger$	F112AA／－22 $\times$ 爯
22	17	6	F112 AB／－22＋ 6	$\frac{1}{4}$	F112AB／－22 $\times \frac{1}{4}$
22	21.5	6	F112 AC／－22＋ 6	$\frac{1}{4}$	F112AC／－22 $\times \frac{1}{4}$
22	21.5	6	$\mathrm{F} 112 \mathrm{AD} /-22+6$	$\frac{1}{1}$	F112AD／－22 $\times \frac{1}{4}$
$22^{2}$	17	6	F112DAI－ $22+6$		
$22^{2}$	21.5	6	F112DC／－22＋ 6		
$22^{2}$	21.5	6	F112DD $/-22+6$		
30	19	6	F112 AA／－30 +6	$\frac{1}{4}$	F112AA／－30 $\times$ 交
30	19	6	F112 AB／－30＋ 6	4	F112AB／－30 $\times \frac{1}{4}$
30	22.5	6	$\mathrm{F} 112 \mathrm{AC} /-30+6$	星	F112AC／－30 $\times \frac{1}{4}$
30	22.5	6	F112AD／－30 +6	4	F112AD／－30 $\times \frac{1}{4}$
$30^{2}$	19	6	F112DA／－30 +6		
$30^{2}$	22.5	6	F112DC $/-30+6$		
$30^{2}$	22.5	6	F112DD $/-30+6$		



1，${ }^{2}$ See next page

## THREE DIFFERENT COLOURS



Switch knobs

max. length   $(\mathrm{mm})$	height   $(\mathrm{mm})$	spindle $\varnothing$	type number ${ }^{1}$
31	17.5	6	F112 CA/-30 $\times 6$
31	17.5	$\frac{1}{4}$	F112 CA/-30 $\times \frac{1}{4}$

${ }_{2}^{1}$ The dash in the type number stands for: $A$ (black), $B$ (grey), $C$ (white).
${ }^{2}$ These "open knobs" are to be used in combination with a "closed" type for operating two concentrical spindles.


## GLASS-TO-METAL SEALS - F043 series

COMPRESSION TYPES


Compression seals are used for hermetically sealing of components. They consist of a tube embedded in the insulating material glass around which a metal outer ring is compressed. The connecting wire has to be led through and soldered to the tube. The compression seal has to be soldered on to the concerning component.


Fig. 1


Fig. 2


Fig. 3

flash-over voltage (kV)	dimensions (mm)						DIN		fig.	type number
	C.D. ${ }^{1}$	$s$	${ }_{1}$	$d_{2}$	$\mathrm{d}_{3}$	$d_{4}$				
2	0.75	0.35	1.5	4.2	-	-	DA0,7	-4,2	1	F043AA/001
2.8	1.5	0.35	4.5	6.2	-	-	DA1,5	-6,2	1	1002
5	4	0.40	2	13.2	-	-	DA4	-13,2	1	1004
5	4	0.40	2	14.2	-	-	DA4	-14,2	1	1005
5	4	0.40	2	15.2	12.8	-	DB4	-15,2	2	1006
5	4	0.40	2	17.2	14.8	-	DB4	-17,2	2	1007
6.2	6	0.40	2	19.2	16.8	-	DB6	-19,2	2	1008
6.2	6	0.40	2	23.8	21.4	-	DB6	-23,8	2	1009
6.2	6	0.40	2	28.8	26.4	-	DB6	-28,8	2	1010
4.5	3	0.40	2	10.7	-	11.7	DC3	-10,7	3	1013

[^45]```
880. . series - GLASS-TO-METAL SEALS
```


MATCHED TYPES

Glass-to-metal seals are used for leading a conductor insulated through the metal envelope of a unit, and, at the same time for hermetically sealing the unit. External influences such as gases, moisture and dust are excluded, and prevalent conditions in the unit as regards vacuum, gas atmosphere or any liquid are rigorously maintained.
Matched-expansion glass-to-metal seals are widely used in both professional equipment and the entertainment sector. Particularly the easy-fitting smaller types are often used as inexpensive feed-throughs, e.g. for channel selectors, without full exploitation of the sealing function. A few further fields of application are: hearing-aids; capacitors; transformers; filters; quartz-crystal units; measuring equipment; computers, and so on.

| creeping distance | | peak voltage in volts | | | | \max current
 (A) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { top } \\ (\mathrm{mm}) \end{gathered}$ | bottom
 (mm) | a | b | c | d | | |
| 3 | 2 | 354 | 1100 | 34 | 800 | 5 | 88012/03 |
| 3 | 2 | 354 | 1100 | 34 | 800 | 10 | 88013/03 |
| 5 | 3.3 | 800 | ${ }^{1} 600$ | 354 | 1100 | 10 | 88013/05 |
| 3 | 2 | 354 | 1100 | 34 | 800 | 5 | 88014/03 |
| 5 | 3.3 | 800 | 1600 | 354 | 1100 | 5 | 88014/05 |
| 10 | 6.7 | 1600 | 2200 | 1000 | 1800 | 10 | 88014/10 |
| 15 | 10 | 3200 | 4000 | 1600 | 2200 | 10 | 88014/15 |
| 15 | 6.7 | 3200 | 4000 | 1000 | 1800 | 10 | 88015/15 |
| 4 | 3 | 500 | 1400 | 354 | 1100 | 10 | 88016/04 |
| 1 | 0.8 | 34 | 34 | 34 | 34 | 2 | 88017/00 |
| 1 | 0.8 | 34 | 34 | 34 | 34 | 1 | 88017/02 |
| 3 | 2 | 354 | 1100 | 34 | 800 | 5 | 88018/03 |
| 5 | 2 | 800 | 1600 | 34 | 800 | 5 | 88018/05 |

[^46]
GLASS-TO-METAL SEALS - 880.. series

MATCHED TYPES

These rigid plugs and sockets have been basically designed for use with microphones and amplifiers. They consist of a moulded synthetic resin body with pins or sockets which are fixed in a strong diecast aluminium can. The contact springs are double acting, offering a four-fold contact guarantee and are of a self-cleaning contact design.

The plugs and sockets are available in three series:
88003 - three-pole according to Fig. 1; $I_{\max } 6$ A
88004 - three-pole according to Fig. 2; $I_{\max } 15$ A
88005 -six-pole according to Fig. 3; $I_{\max } 6 \mathrm{~A}$
Permissible voltages:
$\mathrm{E}_{\text {petk }}$ (between two arbitrary contacts) , 500 V (except between contacts 1 and 2 of series 88003 where $E_{\text {peak }}=350 \mathrm{~V}$. Series 88004 are also suitable for connection to three-phase mains of $3 \times 350 \mathrm{~V}$
Permissible temperature range $-40 /+70^{\circ} \mathrm{C}$
Contact resistance max. $3 \mathrm{~m} \Omega$
Insulation resistance min. $15000 \mathrm{M} \Omega$
Parallel damping. min. $0.5 \mathrm{M} \Omega$ at $1500 \mathrm{kc} / \mathrm{s}$
Capacitance between contacts and casing . 3-6 pF

SCREENED PLUGS AND SOCKETS - 8800. series
30021 $4022 / 26440037$

Female plug
$18 g$

$\int 88003 / 33$
Male plug

Male sorter

$3 g$

E3:1'2
Coupling anton

Fig. 1

Female plug

Male plug

Male socket

Coupling union
Screw cover

Fig. 2

Fig. 3

Grote plug 6-polig centrale per - lur
penmen ondaring pennon - Luis
seton

$$
\therefore 2,5 \mathrm{kV}
$$

$: 200$
$\therefore 2 y 00 \mathrm{~K}$

SOCKETS FOR TUBES AND TRANSISTORS

GENERAL

To ensure the reliability of any electronic equipment, a permanently good electrical contact between tubes or transistors and the circuit is of paramount importance. It is the task of the sockets to provide adequate and lasting contacts. Therefore, very high requirements have to be imposed on their design and qualities, both electrical and mechanical. Even the best tube or transistor will not behave better than its socket will allow it to do!
In service, inferior or wrongly chosen sockets may cause crackling and unduly high losses; when tubes are being inserted into or removed from such sockets, they may even be damaged. Moreover, the dynamic expansion of electronic applications has resulted in a fairly great number of new tube constructions which are used under very divergent and often adverse conditions.
For all these reasons, we have developed a range of first-rate sockets for current tubes and transistors, devoting our best attention to requirements such as high insulation resistance, low capacitance, low losses and ability to withstand high temperatures, shocks and vibrations.

The sockets for radio and TV applications have been designed with the aim to obtain optimum performance at an attractive price. According to the application, the insulating material is either resinbonded paper, synthetic resin or ceramics. Sockets with resin-bonded paper or synthetic resin are suitable for frequencies up to $50 \mathrm{Mc} / \mathrm{s}$. Sockets with ceramic insulating material are suitable for use in humid surroundings ; they will give satisfactory results at frequencies up to $500 \mathrm{Mc} / \mathrm{s}$.
All types have been designed for top-chassis mounting. During soldering operations, the sockets should contain either a dummy tube or a wire jig. Earthing of the centre screen greatly reduces che capacitance batween contacts. Suitable screen cans are available for miniature and noval sockets.

The sockets for professional applications are employed inter alia in transmitters, telecommunications and industrial equipment. Their construction is extra rigid and provides maximum resistance to arcing and flashovers. A few types have been designed for bottom-chassis mounting. If more than one type of socket is available for a given tube base, the choice depends on the application of the tube.

For transistors, three types of socket are avaiable viz. with 3,4 and 5 contacts. These sockets are made of a synthetic resin which can withstand an ambient temperature of $100^{\circ} \mathrm{C}$.

SURVEY

| application | type | insulating material | number of contacts | type number | page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| tubes | subminiature (B8D) | synthetic resin | 8 | 5907/23 | F26 |
| | octal (K8A) | synthetic resin ceramic | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 5903 / 12 \\ & 5903 / 13 \end{aligned}$ | $\begin{aligned} & \text { F26 } \\ & \text { F26 } \end{aligned}$ |
| | miniature (B7G) | resin bonded paper ceramic | $\begin{aligned} & 7 \\ & 7 \end{aligned}$ | $\begin{aligned} & \text { B8 } 70046 \text { (p.w.) } \\ & 5909 / 36 \end{aligned}$ | $\begin{aligned} & \text { F27 } \\ & \text { F27 } \end{aligned}$ |
| | noval (B9A) | resin bonded paper ceramic ceramic | $\begin{aligned} & 9 \\ & 9 \\ & 9 \end{aligned}$ | B8 70049 (p.w.)
 B8 70028 (p.w.)
 B8 70019 | $\begin{aligned} & \text { F28 } \\ & \text { F28 } \\ & \text { F29 } \end{aligned}$ |
| | decal | ```ceramic }\mp@subsup{}{}{1 ceramic}\mp@subsup{}{}{2 ceramic}\mp@subsup{}{}{1 resin bonded paper }\mp@subsup{}{}{1``` | $\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$ | B8 70224
 B8 70022
 B8 70223
 B8 70211 (p.w.) | $\begin{aligned} & \text { F30 } \\ & \text { F30 } \\ & \text { F30 } \\ & \text { F30 } \end{aligned}$ |
| | magnoval | ceramic | 9 | B8 70086 | F31 |
| | eightar | resin bonded paper | 8 | B8 70063 | F31 |
| colour TV $\left(90^{\circ}\right)$
 11" tinyvision TV | 12p. base $7 p$. base | mica-filled synthetic resin resin bonded paper | $\begin{array}{r} 12 \\ 7 \end{array}$ | $\begin{aligned} & 242250401001 \\ & 242250003001 \\ & 242250003002 \text { (p.w.) } \end{aligned}$ | $\begin{aligned} & \text { F32 } \\ & \text { F32 } \\ & \text { F32 } \end{aligned}$ |
| special tubes | superjumbo | ceramic | 4 | 40403 | F33 |
| | medium N base | ceramic | 5 | 40219 | F33 |
| | medium base | special plastic | 7 | 40222 | F34 |
| | 13 p. base | synthetic resin | 13 | B8 70067 | F34 |
| transistors | $\begin{array}{ll} 3 & \mathrm{p} . \\ 4 & \mathrm{p} . \\ 5 & \mathrm{TO} 18) \end{array}$ | synthetic resin | $\begin{aligned} & 3 \\ & 4 \\ & 5 \end{aligned}$ | BB 700 01/00
 BB 70212
 Z9 01230 | F35
 F35
 F35 |

[^47]
SUBMINIATURE TYPE (B8D)

Type 5907/23

Insulating material: synthetic resin
Number of contacts: 8
OCTAL TYPES

Type: 5903/12
Insulating mâterial: synthetic resin Number of contacts: 8

Type: 5903/13

Insulating material: ceramic
Number of contacts: 8

TUBE SOCKETS

MINIATURE TYPES (B7G)

Type B8 70046 for p.w.

Insulating material: resin-bonded paper.
Number of contacts: 7

Strips each contaıning 50 sockets
type B8 70046

| Shielding can | |
| :---: | :---: |
| dimensions
 $H(\mathrm{~mm})$ | type
 number |
| 14 | B8 70006 |
| 52 | B8 70007 |
| 57.5 | B8 70008 |
| 63 | B8 70009 |

Type 5909/36
Insulating material: ceramic Number of contacts: 7

TUBE SOCKETS

NOVAL TYPES

Type B8 70049 for p.w.
Insulating material: resin-bonded paper
Number of contacts: 9

Strips each containing 50 sockets type B8 70049

Type: B8 70028 for p.w.
Insulating material: ceramic
Number of contacts: 9

Type: B8 70019
Insulating material: ceramic
Number of contacts: 9

| Shielding can | |
| :---: | :---: |
| dimensions
 $H(m m)$ | type
 number |
| 41 | B8 70054 |
| 52 | B8 70055 |
| 57.5 | B8 70056 |
| 63 | B8 70057 |
| 74 | B8 70058 |

TUBE SOCKETS

DECAL TYPES

Type E8 70224

Insulating material: ceramic
Number of contacts: 10 , silver-plated

Type B8 70222
Insulating material: ceramic
Number of contacts: 10 , silver-plated

Type B8 70223
Insulating material: ceramic Number of contacts: 10, gold-plated

Type B8 70211 for p.w.
Insulating material: resin-bonded paper on strips each containing 50 sockets type B8 70211
Number of contacts: 10 , silver-plated

TUBE SOCKETS

MAGNOVAL TYPE

Type B8 70086
Insulating material: ceramic Number of contacts: 9

EIGHTAR TYPE

For TV picture tubes, 110° deflection

Type: B8 70063
Insulating material: resin-bonded paper
Number of contacts: 8

Type: 242250401001
Insulating material: mica-filled synthetic resin.
Number of contacts: 12

Type 40403
Insulating material: ceramic Number of contacts: 4

MEDIUM N BASE TYPE

Type 40219
Insulating material: ceramic Number of contacts: 5

TUBE SOCKETS

MEDIUM BASE TYPE FOR TRANSMITTING, INDUSTRIAL AND SPECIAL TUBES

Type 40222
Insulating material: special plastic Number of contacts: 7

13-PIN TYPE FOR COUNTING TUBES

Type B8 70067

Insulating material: synthetic resin
Number of contacts: 13

Type B8 70212 (TO18)
Insulating material: synthetic resin Number of contacts: 4

Type Z9 01230
Insulating material: synthetic resin Number of contacts: 5

AP1001/2 series - IF COILS FOR RADIO (tube sets)

MINIATURE TYPES FOR AM

The AM coils are adjusted to an IF frequency of 452 or $470 \mathrm{kc} / \mathrm{s}$. There are versions for conventional wiring and for printed wiring. The latter items fit a grid of $\varepsilon=0.1^{\prime \prime}$ or 2.50 mm and a hole diameter of 1.3 mm .

Available types

AP1001/52, $452 \mathrm{kc} / \mathrm{s}$ convent. wiring AP1001/70, $470 \mathrm{kc} / \mathrm{s}$ convent. wiring AP1002/52, $452 \mathrm{kc} / \mathrm{s}$ printed wiring AP1002/70, $470 \mathrm{kc} / \mathrm{s}$ printed wiring

446-483 kc/s
maximum working temperature
$85^{\circ} \mathrm{C}$
The coils for conventional wiring are fixed by means of a wire spring shown in the adjacent figure, which also gives the required mounting aperture; the printed-wiring types are mounted by means of two earthing tags.

Mounting spring and aperture for conventional-wiring versions.

IF COILS FOR RADIO (tube sets) - AP1108 series

Available types

AP1108/00 (conventional wiring)
AP1108/01 (printed wiring)

Adjustment range $10.7 \mathrm{Mc} / \mathrm{s} \pm 7.5 \%$
At $10.7 \mathrm{Mc} / \mathrm{s}$. $\mathrm{Q}_{1}=\mathrm{Q}_{2}=110$ $k Q=1.2 \pm 20 \%$

AP1113 series - RATIO DETECTOR COILS FOR RADIO (tube sets)

MINIATURE TYPES FOR FM

$$
\begin{array}{lll}
\text { Adjustment range . } & 10.7 \mathrm{Mc} / \mathrm{s} \pm 7.5 \% \\
\text { At } 10.7 \mathrm{Mc} / \mathrm{s} . & Q_{1}=100, \mathrm{Q}_{2}=90 \\
& \mathrm{kQ}=1.65 \pm 15 \%
\end{array}
$$

Hole pattern

Example of an appropriate circuit diagram

IF COILS FOR RADIO (transistorized sets) - AP1051 series

SUBMINIATURE TYPES FOR AM, FM AND AM/FM

The coils are designed for mounting on princed-wiring boards with an ε-grid $=\mathrm{e} / 4=0.635 \mathrm{~mm}$.
They can be supplied with a built-in capacitor (capacitance values 47,82 , 100 or 150 pF).

| intermediate frequency. | $450-470 \mathrm{kc} / \mathrm{s}(\mathrm{AM})$ | | |
| :--- | :--- | :--- | :--- |
| | $10.7 \mathrm{Mc} / \mathrm{s}(\mathrm{FM})$ | | |
| quality factor Q. | .\quad. | | . |
| inductance adjustment range | . | . | $.00-140$ |
| temperature coefficient. | $\pm 10 \%- \pm 15 \%$ | | |
| $100.10^{-6}-400.10^{-6} /{ }^{\circ} \mathrm{C}$ | | | |

Production quantities can be supplied according to specification.

PIECE PARTS FOR SUBMINIATURE IF COILS

The frame core for the coils of the AP1051 series can be supplied separately. For setmakers who wish to make there own miniature (Lilliput) IF coils (series AP1040-AP1045) an assortment of loose piece parts is available.
These piece parts are described in section "Soft magnetic materials" pages G15, G16.

AP1051 series - IF COILS FOR RADIO (transistorized sets)

SUBMINIATURE TYPES FOR AM

Available types:

AP1051/11 Osc. coil
AP1051/15 1 st IF
AP1051/13 $2^{\text {nd }}$ IF
AP1051/14 $3^{\text {nd }}$ IF

Application

The following performance can be obtained with these coils in the above-given circuit, measured with a supply voltage of -7 V .
a. Sensitivity: Input $2 \mu V \pm 6 \mathrm{~dB}$ at $1 \mathrm{Mc} / \mathrm{s}$ for 50 mV audio output. The input is modulated 30% at $400 \mathrm{c} / \mathrm{s}$. The output is measured across a $5 \mathrm{k} \Omega$ load.
b. Bandwidth: $5.1 \mathrm{kc} / \mathrm{s} \pm 500 \mathrm{c} / \mathrm{s}$ at 6 dB . Measured under similar conditions with a centre frequency of $470 \mathrm{kc} / \mathrm{s}$.
c. Attenuation: $26 \mathrm{~dB} \pm 3 \mathrm{~dB}$ at $\pm 9 \mathrm{kc} / \mathrm{s}$ from centre frequency.
d. Consumption: approx. 3.3 mA .

SUBMINIATURE TYPES FOR AM FM AND AM/FM

Available types: | AM- AP1051/20 | AP1051/22 | FM- AP1051/17 | AP1051/21 | AP1051/23 |
| ---: | ---: | ---: | ---: | ---: |

a. Sensitivity: Input $1.6 \mu \mathrm{~V} \pm 6 \mathrm{~dB}$ at $1 \mathrm{Mc} / \mathrm{s}$ for 10 mV audio output. The input is modulated 30% at $400 \mathrm{c} / \mathrm{s}$. The output is measured unloaded.
b. Bandwidth: $4.8 \mathrm{kc} / \mathrm{s} \pm 500 \mathrm{c} / \mathrm{s}$ at 6 dB . Measured under similar conditions with a centre frequency of $460 \mathrm{kc} / \mathrm{s}$.
c. Attenuation: $77 \times$ at $9 \mathrm{kc} / \mathrm{s}$ from centre frequency.
d. Consumption: approx. 3.3 mA .
$\mathrm{S}_{1}=$ oscillator AM
$S_{3}=$ AP1051/20
$\mathrm{S}_{3}=\mathrm{S}_{\overline{\mathrm{j}}}=\mathrm{AP} 1051 / 21$
$\mathrm{S}_{4}=\mathrm{AP1051/22}$
e. Max. input: V_{b} on first transistor $20 \mathrm{mV}(1 \mathrm{MHz})$
$\mathrm{S}_{6}=\mathrm{AP} 1051 / 23$

IF COILS FOR RADIO (transistorized sets) - AP1051 series

SUBMINIATURE TYPES FOR AM, FM AND AM/FM

Application FM

$\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}, \mathrm{~S}_{5},=$ AP1051/17-IF coil
$\mathrm{S}_{6} \quad=$ AP1051/18-Detector coil
$\mathrm{S}_{7} \quad=$ AP1051/19-Detector coil

The following performance can be obtained with these coils in the above-given circuit, measured with a supply voltage of 6 V .
a. Sensitivity: Input $44 \mu \mathrm{~V}$ for 10 mV audio output. The output is measured unloaded. $\Delta \mathrm{f}=15 \mathrm{kc} / \mathrm{s}$.
b. Bandwidth: $160 \mathrm{kc} / \mathrm{s}$ at 6 dB .
c. Attenuation: $450 \times$ at $300 \mathrm{kc} / \mathrm{s}$ from centre frequency.
d. Consumprion: approx. 3.3 mA .

Application AM/FM

LP1150 series - RF/IF COIL FOR RADIO (transistorized sets)

MODULE TYPE FOR AM

The module type LP1150 is a miniature fully screened frequency changer and I.F. amplifier designed to cover the medium and long wave bands. It is primarily intended for use in small size radio receivers, but its performance is such that it can be used with advantage in larger receivers.
The first transistor is used as a self oscillating mixer. The second and third transistors provide two stages of I.F. amplification at $450-470 \mathrm{kc} / \mathrm{s}$ using single-tuned circuit l.F. transformers. An OA90 diode provides the A.F. output into a $5 \mathrm{k} \Omega$ load, (normally the volume control of the receiver). An R.F. filter capacitor is provided across this A.F. output.

Associated circuits

To complete the radio frequency side of a receiver it is necessary to add the aerial circuit, tuning capacitor and wave range switching. The audio output may be applied direct to the volume control whilst the supply voltage is obtained from a 9 V battery, via a decoupling network. The circuit below has been simplified by omitting the wave range switch.

Connections

1. Oscillator section of tuning gang AC1033
2. Earth
3. Aerial coil secondary
4. Audio output
5. -7 V input
6. Earth

Performance

These figures are based on initial production and may be amended. They are based on a supply voltage, measured at the module, of -7 V .
a. Sensitivity: input $2 \mu \mathrm{~V} \pm 6 \mathrm{~dB}$ at $1 \mathrm{Mc} / \mathrm{s}$ for 50 mV audio output. The input is modulated 30% at $400 \mathrm{c} / \mathrm{s}$. The output is measured across a $5 \mathrm{k} \Omega$ load.
b. Bandwidth: $5.1 \mathrm{kc} / \mathrm{s} \pm 500 \mathrm{c} / \mathrm{s}$ at 6 dB .

Measured under similar conditions with a centre frequency of $470 \mathrm{kc} / \mathrm{s}$.
c. Attenuation: $26 \mathrm{~dB} \pm 3 \mathrm{~dB}$ at $\pm 9 \mathrm{kc} / \mathrm{s}$ from centre frequency.
d. Consumption : approximately 3.3 mA .

POLARIZED RELAY - SZC series

MINIATURE TYPE

These relays are especially designed for applications which require small dimensions, high reliability, long life, low power and short switching times.
They are in particular suitable for use in telephonesystems, computers, remote-control, data switching and telegraphsystems, measuring apparatus, logiccircuits, television, etc. The relays are housed in a hermetically sealed metal can, switch in a well defined gas atmosphere and have good shock and vibration properties.

They can be supplied in two versions:
Type SZC7122. A bistable type with one change-over contact. This version has two normal positions.
Type SZC7123. A monostable type with one change-over contact. This version has one normal position. To keep the make-contact closed, the relay must be energized.

When relay type SZC7122 is energised according to the figure, terminals 2 and 6 are interconnected; in the opposite direction terminals 2 and 1 are interconnected.

When relay type $S Z C 7123$ is energised, terminals 2 and 6 are interconnected.

SZC series - POLARIZED RELAY

MINIATURE TYPE

Winding data

| version | winding | terminals | | number
 of turns | wire
 diam. | resistance
 $25^{\circ} \mathrm{C}(\Omega)$ | type number |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | end | | | | | |
| bistable | I | 5 | 3 | 2400 | 0.05 mm | 290 | SZC7122 |
| monostable | II | 8 | 7 | 2400 | 0.05 mm | 400 | |
| | 1 | 5 | 3 | 2400 | 0.05 mm | 290 | SZC7123 |
| | II | 8 | 7 | 2400 | 0.05 mm | 400 | |

The tolerance on the winding resistance is $\pm 15 \%$.

Ampere turns

| | | | | bistable relay | monostable relay |
| :--- | :--- | :--- | :--- | :---: | :---: |
| operate | . | . | . | . | 35 AT |
| release. | . | . | . | . | - |
| non operate | . | . | . | . | 10 AT |
| hold | . | . | . | 20 AT | |

Life of contacts>10 ${ }^{7}$ contact operations.

Switching times.

1. Operate time of closed contact.

This time depends on the energizing AT, operate AT and the total power in the energizirg circuit and may vary from
$0.3-1.5 \mathrm{msec}$ (monostable type)
and $0.15-0.6 \mathrm{msec}$ (bistable type),
eg.

| circuit dissipation | 500 mW | 100 mW |
| :--- | :---: | :---: |
| $\frac{\text { energizing AT }}{\text { operate AT }}$ | 2 | 1.1 |
| monostable type
 bistable type. . . . | approx. 0.3 msec | approx. 1.5 msec
 approx. 0.15 msec |

2. Change-over time. This time also depends on the energizing AT, operate $A T$ and the total power in the energizing circuit, and lies between 0.25 and 0.6 msec .
3. Bounce time $\leq 0.3 \mathrm{msec}$ at 90% of the relays of a batch.

F44

CLASSIFICATION

A correctly chosen loudspeaker is essential to obtain adequate acoustic results from electro-acoustic equipment. The following factors should be considered.

Shape, size and attachment, with reference to the available space.
Quality and sensitivity, which compromise between fidelity of reproduction and price.

The frequency-response characteristic in relation to the kind of application.
Impedance and power-handling capacity, which should be adapted to the output stage of the equipment.

Appearance and finish.

To facilitate your making a choice from our programme of loudspeakers, all the basic types are tabulated on page 51. The explanations given in the rest of this introduction apply to the entire programme and, therefore, they are not repeated in the specifications.

Midget speakers

As their name indicates, the midget speakers have minor dimensions and, particularly, very small depth. Nevertheless they have a remarkable sensitivity and, thanks to this circumstance and to the special Z-version frequency-response characteristics, they are extremely suitable for transistorised radio sets such as portable, pocket-size and personal equipment.

Standard speakers

The standard speakers are by far the most extensive group. As a consequence of the diversity in characteristics and size, they are suitable for sets of all kinds, AM, FM, TV, car radio, electrophones, tape recorders, sound columns, consoles, etc. in all the various price classes.
Almost any size is available in two or more sensitivity classes (I, II, III and IIIA) according as a magnet system of 6800,8500 or 9500 gauss is used; the difference in acoustic output between consecutive classes is 3 dB .

The TICONAL magnet systems class I, II and III have remarkably weak leakage fields.
The classes III and IIIA are identical as regards their high quality, but the IIIA speakers have a smaller depth thanks to the use of flat ferroxdure magnet rings. Therefore, they are appropriate for larger-size transistor equipment such as table-type radio sets, carradio sets, gramophones and tape recorders.

The fairly appreciable difference in price between the various classes allows of choosing the required compromise between price and quality for any individual application.

High-quality speakers

The high-quality speakers have been specially designed for use in Hi-Fi equipment, where a high power-handling capacity, a very wide frequency-range and a negligible distortion level are required. Examples of application: acoustic boxes, bass-reflex boxes, juke boxes, Hi-Fi enclosures, with and without cross-over network and stereo columns.

Special speakers

The special speakers have specific applications. (see fage F85)

ATTACHMENT

All the loudspeakers conform to the recommendations of the E.I.A. (Electronic Industries Association, formerly RETMA).

QUALITY LEVEL

Thanks to the use of superior TICONAL or ferroxdure magnets of outstanding materials for cone and centre ring, as also to the rugged construction featuring a closetolerance air-gap, the quality of each type of speaker complies with the most exacting requirements.

FINISH

The loudspeakers are tropic-proof and they are cadmium-plated so as to prevent any corrosion.

DERIVATIVE TYPES

Each basic type may have one or more derivative versions as regards acoustic characteristics and voice-coil impedance.

M-VERSION (bicone speakers)

These speakers are equipped with an extra high-note cone inside the normal one. This results in remarkable perfection of reproduction, the frequency range being expanded from about $10 \mathrm{kc} / \mathrm{s}$ to some $20 \mathrm{kc} / \mathrm{s}$, and the spatial sound-distributions being made more uniform.

At high frequencies the normal cone suffers from the "breaking-up" effect, which means that not all parts vibrate in phase any longer: the entire cone area cannot follow the quick vibrations as a consequence of inertia; several parts will vibrate out of phase and so counteract each other. At rising frequency the effective area is even more restricted to the apex region of the cone, and a steadily decreasing acoustic output is the result.

Glueing a small and fairly stiff extra cone inside the apex of the normal cone enlarges the radiating surface at high frequencies, and hence improves the high-note reproduction.

The extra cone furthermore acts as a sound diffuser at frequencies up to about $10 \mathrm{kc} / \mathrm{s}$, the range of the normal cone. Beyond this frequency the small cone gradually takes over from the larger one, the latter then acting as a high-note reflector.

Applications are, inter a!ia, Hi-Fi equipment, stereo enclosures, TV receivers and FM radio sets.

X-VERSION

The speakers of this version have been specially designed for medium-class receivers that can reproduce only a limited frequency range.
By employing special cone-techniques, it was found possible to obtain an increased sensitivity in the region of maximum earsensitivity ($1-4 \mathrm{kc} / \mathrm{s}$). Between 1.4 and $6 \mathrm{kc} / \mathrm{s}$ the frequency characteristic shows a so-called forwardness or presence peak of about 5 dB , making the sound very clear and open.

Y-VERSION

For less powerful AM/FM receivers such as battery sets, where high-note distortion is likely to occur, the speakers of this version are very suitable.
The sensitivity in the region of $1-4 \mathrm{kc} / \mathrm{s}$ is further increased, and frequencies beyond $6 \mathrm{kc} / \mathrm{s}$ are suppressed. A presence peak of $7-8 \mathrm{~dB}$ improves the sound quality to a fair level.

Z-VERSION

These speakers have a major sensitivity in the medium range and, for cone diameters up to $4^{\prime \prime}$, a frequency cut-off at $3.5-4 \mathrm{kc} / \mathrm{s}$ so as to avoid the noise that accompanies the higher frequencies. In the case of a larger cone diameter, the reproduction of the higher frequencies is attenuated.

Z-version speakers are extremely suitable for transistorised sets.

IMPEDANCE

In addition to the low-ohmic basic types, the loudspeakers are available in high-ohmic versions which may be desirable in the case of a transformerless output stage.
Standard high-ohmic versions are the following.

| A (800Ω), | $H(25 \Omega)$, |
| :--- | :--- |
| $C(150 \Omega)$, | P (15Ω), |
| $G(100 \Omega)$, | S (8Ω), |
| K (60Ω), | R (4Ω). |

PREFERRED TYPES

Speakers with type numbers in bold print are as a rule available at shorter notice than the other types.

Non-listed items can be supplied on request.

GENERAL

On the following pages you will find the frequency-response curves of all low-ohmic types. These curves are measured under the following conditions:

1. recorded in anechoic room;
2. without baffle;
3. microphone in axis of loudspeaker at a distance of 50 cm ;
4. input 50 mW at $400 \mathrm{c} / \mathrm{s}$;
5. constant voltage.

Comparing a constant-current characteristic of any loudspeaker with a constant-voltage one, we find the latter flatter in the region of the resonance frequency, whereas it drops more abruptly at the higher frequencies. The reason is as follows.
The power which moves the coil and the cone is proportional to the current through the coil. In the case of constant voltage, the current will decline in the neighbourhood of the resonance frequency and at higher frequencies as a consequence of rising coil impedance. The result is dropping sound pressure in these frequency regions.
The frequency ranges indicated on the obsolete EP-sheets relate to older constantcurrent measurements and, hence, do not relate to the response curves depicted here.

THE USE OF RESPONSE CHARACTERISTICS

First of all we wish to emphasise that these curves should be used exclusively for comparison.
Never compare curves which are not based on one and the same measuring method (identical measuring equipment, measuring room, distance, power input and, even, identically mounted speakers). Only experienced experts are able to compare response curves not based on exactly identical conditions. Also the condition of the anechoic chamber may greatly affect the results.
Contrary to many other manufacturers, frequency characteristics for loudspeakers were determined without a baffle.

THE FREQUENCY CHARACTERISTICS FOR MAKING COMPARISONS

The response curve does help us to disclose differences in reproduction quality. The comparison of curves determined under identical conditions may give a picture of a few acoustical aspects. A difference in level means a difference in sensitivity (efficiency) in various frequency regions. A difference in width means a difference in frequency range.
We should never forget, however, that the curves represent the sound pressure only in the centre of a circular plane. Since the sound pressure is not uniformly distributed over the plane and not in the same manner in various cases, the sound impression may differ more than the response curves suggest.
It will be evident that a high degree of expertness is required to interpret the differences in response curves. For the greater part, this expertness is gained through experience.

FREQUENCY CHARACTERISTICS AN AID FOR MANUFACTURERS

Response curves play a great part in the development of loudspeakers, pinpointing their acoustic characteristics, their manufacture and production checks.
For a major part, the acoustic characteristics are bound up with the moving parts of a speaker, i.e. the coil, centring ring and cone. For the development engineer it is but a small problem to establish what response curve is required for an equipment under development. Furthermore, if the acoustic reproduction is not yet up to the requirements, it is a fairly simple matter for them to subject the speaker to slight modifications, based on the frequency curve, and to examine the effect with the help of the curve. For loudspeakers in production, the frequency characteristic is an excellent means to check the reproduction quality and, at the same time, the sensitivity of the magnet system. As regards less experted customers, great caution should be exercised as for use and interpretation of the curves.

SURVEY OF BASIC TYPES

| cone size | shape of | midget | | standard | speakers | | special | high |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | flange | speakers | class 1 | class II | class III | class III A | speakers | speakers |
| 2" | round | AD2218 | | | | | | |
| 2.25" | round | AD2209 | | | | | | |
| 2.5 " | round | AD3207 | | | | | | |
| 3 " | square | AD3316 | AD1300 | AD2300 | | | | |
| 4" | square | AD3416 | AD1400 | AD2400 | | | | |
| $4^{\prime \prime}$ | round | AD3417 | | | | | | |
| 4" | special | AD3414 | | | | | | |
| 4" | round | AD3415 | | | | | | |
| 5" | octagonal | | AD1500 | AD2500 | AD3500 | AD3514 | | |
| 6.5 ${ }^{\prime \prime}$ | octagonal | | AD1700 | AD2700 | AD3700 | AD3714 | AD3701 | |
| 6.5" | roundwafer | | | | | | AD3721 | |
| $6.5^{\prime \prime}$ | round- | | | | | | AD3725 | |
| $6.5^{\prime \prime}$ | roundwafer | | | | | | AD3729 | |
| 8" | octagonal | | - | AD2800 | AD3800 | AD3814 | | AD4800 |
| 8.5" | round | | | | | | | 9710 |
| $10^{\prime \prime}$ | round | | | | | | | AD4000 |
| 12" | round | | | | | | AD4201 | AD4200 |
| 12" | round | | | | | | | AD5200 |
| $3 \times 8{ }^{\prime \prime}$ | oval | | | | AD3380 | | | |
| 4×6 " | oval | | | AD2460 | AD3460 | AD3464 | | |
| 5×7 " | oval | | | AD2570 | AD3570 | AD3574 | | |
| 6×9 " | oval | | | AD2690 | AD3690 | AD3694 | | |
| standard cones | | Z-Y-X | Z-O-X | Z-O-X-M | Z-O-X-M | Z-X-M | O-X-M | O-M |
| standard impedance (low-ohmic) | | 3-4-8 Ω | 3Ω | $3-5 \Omega$ | 4-5 Ω | 5Ω | 5Ω | 7Ω |

Woofer loudspeaker AD5201 Hi-Fi (see page F96)

2" MIDGET LOUDSPEAKERS

AD2218

Primary applications:

pocket radios and other transistorised sets of minor dimensions.

Specific property:

Extremely flat magnet of TICONAL X.

Main dimensions:
outer diameter 51.7 mm
total depth max. 17.2 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.3 | 3 | 590 | 6000 | 6000 | 40 | AD2218Z |

2.25" MIDGET LOUDSPEAKERS

Primary applications:

pocket radios and other transistorised sets of minor dimensions.

Specific properties:

1. Extra-powerful magnet of TICONAL GG and a pot of sintered iron.
2. Negligible stray field (at 1 mm distance from the magnet system, the stray field is hardly measurable).

Main dimensions:

```
outer diameter . . . . . . . . . }58\textrm{mm
total depth max.
23 mm
```


| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

2.5* MIDGET LOUDSPEAKERS

AD3207

Primary applications:

personai sets and other transistorised cordless radio receivers.

Specific property:

High sensitive magnet of ferroxdure 300.

Main dimensions:
outer diameter 63.9 mm
total depth max. 20.1 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3" MIDGET LOUDSPEAKERS

AD3316

Primary applications:

portable radios and other transistorised cordless sets.

Specific properties:

1. Small depths owing to a flat magnet of powerful ferroxdure.
2. The frequency-response curve displays a pronounced presence peak in the region of maximum ear sensitivity.

Main dimensions:
mounting diameter 92 mm
outer diameter 80.2 mm
total depth max. 27.2 mm

| power-
 handling
 capacity | total
 impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (W) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 manetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 1 | 3 | 285 | 9500 | 9500 | 130 | AD3316Z |
| 1 | 8 | 285 | 9500 | 9500 | 130 | AD3316SZ |
| 1 | 150 | 285 | 9500 | 9500 | 130 | AD3316CZ |

4 " MIDGET LOUDSPEAKERS

AD3416

Primary applications:

cordless radio sets; small tape recorders.

Specific properties:

1. Favourable compromise between features such as high acoustic output, reduced mounting depth and low weight.
2. Powerful ferroxdure magnet.
3. The frequency-response curve displays a pronounced presence peak in the region of maximum ear sensitivity.

Main dimensions:
mounting diameter 119 mm
outer diameter 105.2 mm
total depth max. 29.3 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3 | 250 | $240-6000$ | 9500 | 9500 | 150 |

Primary application:

AM/FM transistor sets.

Specific properties:

1. Frequency range suitable for both $A M$ and $F M$ reception in transistorised sets. They combine the advantages of our Z-type cones with a frequency limit of $7.8 \mathrm{kc} / \mathrm{s}$, which was found to be the best compromise to ensure satisfactory results in both systems.
2. Small depth owing to flat ferroxdure magnet.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.5 | 3 | 155 | $135-8000$ | 9500 | 9500 | (g) |

4° MIDGET LOUDSPEAKERS

AD3414

Primary application:

high-quality cordless radio sets

Specific properties:

1. These class-IIIA speakers are particularly suitable for high-performance cordless radio sets.
2. Extremely sensitive ferroxdure magnet, which converts even small output signals into a sound of fair volume.
3. The resonance frequency has been adapted to the average size of smaller sets so as to obtain optimum bass reproduction.

Main dimensions:
mounting diameter 115 mm
outer diameter. 95.2 mm
total depth max. 42.2 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | (g) type number | |
| 3 | 3 | 165 | $170-7000$ | 22300 | 12000 | 400 |

4 M MIDGET LOUDSPEAKERS

AD3415

Primary application:

cordless radio sets
(in particular for AM/FM reception)

Specific properties:

1. Owing to the large and flat square magnet of ferroxdure and the X -version cone, these speakers combine high sensitivity and appreciable presence with a small depth.
2. Sensitivity equals that of type AD3414Z, but the wider frequency range renders these speakers suitable for AM/FM sets.

Main dimensions:
outer diameter. 105.2 mm
total depth max 41.1 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 (Mx) | flux
 density
 (G) | weight | (g) type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3* STANDARD LOUDSPEAKERS

AD1300-06

Primary applications:

small radio receivers:
intercoms; TV tweeters.

Specific properties:

1. Thanks to the pronounced high-note reproduction the AD1300 is quite suitable for use as high-note projector at the front of receivers.
2. The Z -version is outstandingly suited to obtain clear reproduction of the human voice.

Main dimensions:
mounting diameter 92 mm
outer diameter. 80.2 mm
total depth max. 42.8 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | tesonance
 frequency
 (c/s) | total
 magnetic
 flux
 $(M \times)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

3* STANDARD LOUDSPEAKERS

Primary applications:

small radio receivers; intercoms; TV tweeters.

Specific properties:

1. Thanks to the pronounced high-note reproduction the AD2300 is quite suitable for use as high-note projector at the front of receivers;
2. The Z-version is outstandingly suited to obtain clear reproduction of the human voice.

Main dimensions:
mounting diameter 92 mm
outer diameter. 80.2 mm
total depth max. 54.8 mm
total depth max. 54.8 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

4" STANDARD LOUDSPEAKERS

AD1400-06

Primary applications:

AM/FM radio sets;
tape recorders; electrophones.

Specific property:

As a consequence of the raised response in the mediumnote region, the Z-version items are outstandingly suited to obtain clear reproduction of the human voice. Therefore, they are widely used for dictaphones.

Main dimensions:
mounting diameter 115 mm
outer diameter. 105.2 mm
total depth max. 50 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | (g) | | | |
| 3 | 3 | 165 | 9500 | 6800 | 160 | AD1400-06 |
| 3 | 3 | 202 | 9500 | 6800 | 160 | AD1400Z-06 |
| 3 | 25 | 202 | 9500 | 6800 | 160 | AD1400HZ-06 |

4^{*} STANDARD LOUDSPEAKERS

Main dimensions:
mounting diameter 115 mm
outer diameter. 105.2 mm
total depth max. 62 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 3 | 170 | 15800 | 8500 | 260 | AD2400-06 |
| 3 | 3 | 165 | 15800 | 8500 | 260 | AD2400M-06 |
| 3 | 3 | 205 | 15800 | 8500 | 260 | AD2400Z-06 |
| 3 | 60 | 205 | 15800 | 8500 | 260 | AD2400KZ-06 |

5* STANDARD LOUDSPEAKERS

AD1500-06

Primary application:

all kinds of radio and TV sets.

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter 119 mm
outer diameter. 121 mm
total depth max. 51.5 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 3 | 130 | 9500 | 6800 | 150 | AD1500-06 |
| 6 | 3 | 130 | 9500 | 6800 | 150 | AD1500X-06 |

Primary application:

all kinds of radio and TV sets

Specific properties:

See section "Introduction", standard speakers.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | type number |
| :---: |
| 3 |

5" STANDARD LOUDSPEAKERS

AD3500-06

Primary applications:

all kinds of radio and TV sets

Specific properties:

1. The 800Ω type, obtained by applying a special method of winding the voice coil, can be used in conjunction with a single-ended transformerless output stage.
2. High sensitivity.
3. See section "Introduction", standard speakers p. 46.

Main dimensions:
mounting diameter 119 mm
outer diameter. 121 mm
total depth max. 68 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 (Mx) | flux
 density
 (G) | weight | (g) type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 5 | 130 | 28000 | 9500 | 400 | AD3500-06 |
| 3 | 5 | 124 | 28000 | 9500 | 400 | AD3500M-06 |
| 3 | 800 | 124 | 28000 | 9500 | 400 | AD3500AM-06 |
| 6 | 5 | 130 | 28000 | 9500 | 400 | AD3500X-06 |

5" STANDARD LOUDSPEAKERS

Primary applications:

equipment in which little space is available, such as taperecorders, car radios and gramophones.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3514 equals that of the class-III types AD3500-06 provided with a TICONAL magnet.

Main dimensions:
mounting diameter 119 mm
outer diameter. 121 mm
total depth max. 52.5 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | total
 frequency
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | (G) | type number |
| 3 | 5 | 124 | $95-18000$ | 28200 | 9500 | 445 |
| 6 | 5 | 130 | $100-11000$ | 28200 | 9500 | 445 |
| 3 | 5 | 155 | $150-10000$ | 28200 | 9500 | 445 |

6.5" STANDARD LOUDSPEAKERS

AD1700-06

Primary application:

all kinds of radio and TV sets

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter 156 mm
outer diameter. 155.2 mm
total depth max. 61.4 mm

| power-
 handling
 capacity
 (W) | impedance
 at 1 kc / s
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 (Mx) | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

6.5" STANDARD LOUDSPEAKERS

Primary application:

all kinds of radio and TV sets

Specific properties:

See section "Introduction'", standard speakers, p. 46.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | type number |
| :---: |

6.5 ${ }^{\circ}$ STANDARD LOUDSPEAKERS

AD3700-06

Specific properties:

1. The 800Ω type, obtained by applying a special method of winding che voice coil, can be used in conjunction with a single-ended transformerless output stage.
2. High sensitivity
3. See "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter 156 mm
outer diameter 155.2 mm total depch max. 77.9 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 90 | 28000 | 9500 | 440 | AD3700-06 |
| 3 | 5 | 85 | 28000 | 9500 | 440 | AD3700M-06 |
| 3 | 800 | 85 | 28000 | 9500 | 440 | AD3700AM-06 |
| 6 | 5 | 110 | 28000 | 9500 | 440 | AD3700X-06 |
| 3 | 5 | 135 | 28000 | 9500 | 440 | AD3700Z-06 |

6.5 ${ }^{\prime \prime}$ STANDARD LOUDSPEAKERS

Primary applications:

equipment in which little space is available, such as taperecorders and magnetophones.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3714 equals that of the class-III types AD3700-06, provided with a TICONAL magnet.

Main dimensions:

$$
\text { mounting diameter } 156 \text { mm }
$$

$$
\text { outer diameter } 155.2 \text { mm }
$$

total depth max.

$$
62.4 \text { mm }
$$

| powerhandling capacity (W) | impedance at $1 \mathrm{kc} / \mathrm{s}$ ($\Omega)$ | resonance frequency (c/s) | ```total magnetic flux (Mx)``` | flux density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 85 | 28200 | 9500 | 475 | AD3714M |
| 6 | 5 | 110 | 28200 | 9500 | 475 | AD3714X |

$8^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD2800-06

Primary applications:

all kinds of radio and TV sets

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter 194 mm outer diameter. 191.6 mm total depth max. 82.8 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | total
 frequency
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | (g) | type number |
| 6 | 5 | 75 | $65-11000$ | 15200 | 8500 | 370 |
| 6 | 5 | 72 | $60-18000$ | 15200 | 8500 | 370 |
| 6 | 5 | 95 | $70-10000$ | 15200 | 8500 | 370 |

8" STANDARD LOUDSPEAKERS

AD3800-06

Primary applications:

all kinds of radio and TV sets.

Specific properties:

1. The 800Ω type, obtained by applying a special method of winding the voice coil, can be used in conjunction with a single-ended transformerless output stage.
2. High sensitivity.
3. See section "Introduction", standard speakers.

Note: In 1966 this loudspeaker will be replaced by type AD3806, which has identical proporties.

Main dimensions:
mounting diameter 194 mm
outer diameter 191.6 mm total depth max. 88.3 mm

| power-
 handling
 capacity
 (W) | impedance
 at 1 kc / s
 (Ω) | resonance
 frequency
 (c / s) | total
 frequency
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (g) | type number | | | | | | |
| | | | | | | | |
| 6 | 5 | 75 | $65-11000$ | 28000 | 9500 | 520 | AD3800-06 |
| 6 | 5 | 72 | $60-18000$ | 28000 | 9500 | 520 | AD3800M-06 |
| 6 | 800 | 72 | $60-18000$ | 28000 | 9500 | 520 | AD3800AM-06 |
| 6 | 5 | 95 | $70-10000$ | 28000 | 9500 | 520 | AD3800X-06 |

8" STANDARD LOUDSPEAKERS

AD3814

Primary applications:

AM/FM receivers;
equipment in which little space is available, such as taperecorders and magnetophones.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3814 equals that of the class-III types AD3800-06 provided with a TICONAL magnet.

Main dimensions:
mounting diameter 194 mm
outer diameter 191.6 mm
total depth max. 72.8 mm

$\left.\begin{array}{c|c|c|c|c|c|c}\hline \begin{array}{c}\text { power- } \\ \text { handling } \\ \text { capacity } \\ (W)\end{array} & \begin{array}{c}\text { impedance } \\ \text { at 1 kc/s } \\ (\Omega)\end{array} & \begin{array}{c}\text { total } \\ \text { resonance } \\ \text { frequency } \\ (c / s)\end{array} & \begin{array}{c}\text { magnetic } \\ \text { flux } \\ (M x)\end{array} & \begin{array}{c}\text { flux } \\ \text { density } \\ (G)\end{array} & \text { weight } & \text { (g) }\end{array} \begin{array}{c}\text { (g) number }\end{array}\right]$

$3^{\prime \prime} \times 8^{*}$ STANDARD LOUDSPEAKERS

AD3386RX

Primary applications:

TV sets; portable radios; tape recorders.

Specific properties:

1. Stretched oval speakers of the class-ill type.
2. Extremely good acoustic performance notwithstanding its asymmetry.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 130 | $120-12000$ | 28000 | 9500 | 450 | AD3386RX |

$4^{\prime \prime} \times 6^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD2460-06

Primary applications:

small radio sets; electrophones;
tape recorders.

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter . . $117.5 \times 92 \mathrm{~mm}$ outer diameter $155 \times 103 \mathrm{~mm}$ total depth max. $62,8 \mathrm{~mm}$

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$4^{\prime \prime} \times 6^{*}$ STANDARD LOUDSPEAKERS

Primary applications:

small radio sets; electrophones; tape recorders.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$4^{\prime \prime} \times 6^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD3464

Primary applications:

equipment in which little space is available, such as taperecorders, magnetophones and car radios.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3464 equals that of the class-III types AD3460-06 provided with a TICONAL magnet.

Main dimensions:
mounting diameter . . . $117.5 \times 92 \mathrm{~mm}$
outer diameter. $155 \times 103 \mathrm{~mm}$
total depth max. 52.8 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 3 | 5 | 124 | $105-18000$ | 28200 | 9500 | 480 | AD3464M |
| 6 | 5 | 130 | $110-11000$ | 28200 | 9500 | 480 | AD3464X |

$5^{\prime \prime} \times 7^{*}$ STANDARD LOUDSPEAKERS

AD2570-06

Primary application:

all kinds of radio and TV sets.

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:

$$
\begin{aligned}
& \text { mounting diameter } 110 \times 110 \mathrm{~mm} \\
& \text { outer diameter. } \\
& \text { total depth max. } \\
& \text { to } 183 \mathrm{~mm} \\
& 72.8 \mathrm{~mm}
\end{aligned}
$$

| power-
 handling
 capacity | impedance
 at 1 kc/s
 (W) | tosonance
 requency
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 5 | 90 | 15200 | 8500 | 320 | AD2570-06 |
| 3 | 5 | 90 | 15200 | 8500 | 320 | AD2570M-06 |
| 6 | 5 | 110 | 15200 | 8500 | 320 | AD2570X-06 |

$5^{\prime \prime} \times 7^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD3570-06

Primary application:
all kinds of radio and TV sets.

Specific properties:

1. Oval class-III types designed for use in those cases where the available space prohibits the accommodation of round class-III speakers AD3700.
2. High acoustic output owing to the powerful TICONAL magnet.

Main dimensions:
mounting diameter $110 \times 110 \mathrm{~mm}$ outer diameter. $183 \times 133 \mathrm{~mm}$ total depth max. 78.3 mm

| power-
 handling
 capacity
 (W) | impedance
 at 1 kc / s
 (Ω) | tetal
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 5 | 90 | 28000 | 9500 | 470 | AD3570-06 |
| 3 | 5 | 90 | 28000 | 9500 | 470 | AD3570M-06 |
| 6 | 5 | 110 | 28000 | 9500 | 470 | AD3570X-06 |

5" $\times 7^{\prime \prime}$ STANDARD LOUDSPEAKERS

Primary applications:

radio and TV sets;
equipment in which little space is available, such as taperecorders and magnetophones.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3574 equals that of the class-III types AD3570-06 provided with a TICONAL magnet.

Main dimensions:
mounting diameter $110 \times 110 \mathrm{~mm}$
outer diameter $183 \times 133 \mathrm{~mm}$
total depth max. 62.8 mm

10 kHz 20

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 6 | 5 | 90 | 28200 | 9500 | 520 | AD3574M |
| 3 | 5 | 110 | 28200 | 9500 | 520 | AD3574X |

$6^{\prime \prime} \times 9^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD2690-06

Primary applications:

AM/FM and TV sets;
radiogramophones.

Specific properties:

See section "Introduction", standard speakers, p. 46.

Main dimensions:

$$
\begin{aligned}
& \text { mounting diameter . . } 166.7 \times 117.5 \mathrm{~mm} \\
& \text { outer diameter. . . } \\
& \text { total depth max. } 83.6 \times 160.6 \mathrm{~mm} \\
& \text { te }
\end{aligned}
$$

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 6 | 5 | 77 | $65-18000$ | 15200 | 8500 | 375 | AD2690M-06 |
| 6 | 5 | 100 | $90-9000$ | 15200 | 8500 | 375 | AD2690X-06 |

$6^{\prime \prime} \times 9^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD3690-06

Primary applications:

AM/FM and TV sets; radiogramophones.

Specific properties:

1. The 800Ω type, obtained by applying a special method of winding the voice coil, can be used in conjunction with a single-ended transformerless output stage.
2. High sensitivity.
3. See section "Introduction", standard speakers, p. 46.

Main dimensions:
mounting diameter . . $166.7 \times 117.5 \mathrm{~mm}$ outer diameter . . . $233.6 \times 160.6 \mathrm{~mm}$ total depth max. 88.3 mm

| powerhandling capacity (W) | impedance at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance frequency (c/s) | frequency range (c/s) | total magnetic flux $(M x)$ | flux density (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | 80 | 70-11000 | 28000 | 9500 | 525 | AD3690-06 |
| 6 | 5 | 77 | 65-18000 | 28000 | 9500 | 525 | AD3690M-06 |
| 6 | 800 | 77 | 65-18000 | 28000 | 9500 | 525 | AD3690AM-06 |
| 6 | 5 | 100 | 90-9000 | 28000 | 9500 | 525 | AD3690X-06 |

$6^{\prime \prime} \times 9^{\prime \prime}$ STANDARD LOUDSPEAKERS

AD3694

Primary application:

equipment in which little space is available, such as taperecorders magnetophones and carradios.

Specific properties:

1. Flat but, nevertheless, very sensitive loudspeaker magnet system owing to the small height of its annular ferroxdure magnet.
2. The acoustic output of the class-IIIA speakers AD3694 equals that of the class-III types AD3690-06 provided with a TICONAL magnet.

Main dimensions:
mounting diameter . . $166.7 \times 117.5 \mathrm{~mm}$
outer diameter. . . . $233.6 \times 160.6 \mathrm{~mm}$
total depth max. 72.8 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | tesonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (g) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

6.5" SPECIAL LOUDSPEAKERS

Primary application:

small closed cabinets for monophonic and stereophonic reproduction (see page F95).

Specific properties:

1. Hi-Fi reproduction over a very wide frequency range owing to the use of a special double cone which has a very low resonance frequency and reproduces even the highest tones so as to ensure a true timbre.
2. Great power-handling capacity when placed in a closed cabinet having a volume of about 25 litres.
3. Very high sensitivity owing to the use of a large annular ferroxdure magnet.

Main dimensions:
mounting diameter 156 mm
outer diameter. 155.2 mm
total depth max. 67 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad type number | (g) |
| :---: |

6.5" SPECIAL LOUDSPEAKERS

AD3721

Primary application

equipment in which little space is available, such as taperecorders and electrophones.

Specific properties:

1. These wafer types have a space-saving shape and a small mounting depth.
2. High acoustic efficiency nothwithstanding the small mounting depth owing to the sensitive flat ferroxdure magnet.
3. Flat wafer design

Main dimensions:
mounting diameter. 156 mm
outer diameter. 166.6 mm
total depth max. 41.1 mm

| powerhandling capacity (W) | impedance at $1 \mathrm{kc} / \mathrm{s}$ (Q) | resonance frequency (c/s) | total magnetic flux (Mx) | flux density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 5 | 110 | 28200 | 9500 | 500 | AD3721 |

Primary application:

TV sets.

Specific properties:

1. These speakers (otherwise identical to type AD3721) are equipped with a leakage-compensation assembly composed of a screening bracket and two compensation magnets, which almost completely neutralise the leakage field of the loudspeaker magnet. In view of the compactness of TV receivers this is of paramount importance to prevent the speakers - close to the picture tube - from affecting the image quality.
2. Flat wafer design, greatly facilitating accommodation of these speakers in TV sets.
3. The sensitive flat ferroxdure magnet ensures a high efficiency.

Main dimensions:
mounting diameter 156 mm
outer diameter. 166 mm
total depth max. 41.1 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | total
 resonance
 frequency
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 5 | 110 | 23200 | 9500 | 530 | AD3725 |
| 3 | 850 | 110 | 28200 | 9500 | 530 | AD3725A-02 |

6.5" SPECIAL LOUDSPEAKERS

AD3729

Primary application:

TV sets.

Specific properties:

1. Small mounting depth as a result of the inverted construction.
2. High sensitivity (class III) owing to the use of a TICONAL GG magnet.
3. Absence of a stray field, an essential condition to obviate any influence on the picture tube.
4. The M-version speakers have a wide frequency range.

When the speakers, which are supplied in a plastic envelope, are built in, the front must be covered with a piece of muslin so as to prevent dust from entering the air gap.

Main dimensions:
mounting diameter 156 mm
outer diameter. 155 mm
total depth max. 46.9 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | tesonance
 frequency
 (c / s) | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| 3 | 4 | 80 | 18900 | 7000 | 250 | AD3729RM |
| 3 | 800 | 80 | 18900 | 7000 | 250 | AD3729AM |
| 3 | 4 | 100 | 18900 | 7000 | 250 | AD3729RX |

Primary applications:

juke boxes:

acoustic boxes for musical installations.

Specific properties:

1. New type of inexpensive speaker with a reasonably good efficiency, well suitable for those installations where both cost and quality are factors of importance.
2. The M-version is suited to stereo reproduction because of its wide frequency range.

Main dimensions:

$$
\begin{aligned}
& \text { mounting diameter } 294 \mathrm{~mm} \\
& \text { outer diameter. } 314.3 \mathrm{~mm} \\
& \text { total depth max. } 122.7 \mathrm{~mm}
\end{aligned}
$$

| powerhandling capacity (W) | impedance at $1 \mathrm{kc} / \mathrm{s}$ (Ω) | resonance frequency (c/s) | frequency range (c/s) | total magnetic flux (Mx) | flux density (G) | weight
 (g) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 5 | 45 | 40-7000 | 42600 | 9500 | 850 | AD4201 |
| 10 | 5 | 45 | 40-18000 | 42600 | 9500 | 850 | AD4201M |

8^{*} HIGH-QUALITY LOUDSPEAKERS

AD4800

Primary applications:

Hi -Fi and stereo equipment;
type AD4800 is suitable for low-note reproduction, such as required for acoustic and bass-reflex boxes, and for low and medium note reproduction in cross-over networks.

Specific properties:

1. When these speakers are placed in an acoustic box or any other enclosure, their sensitivity and response qualities result in an almost constant sound pressure over the entire audible frequency range.
2. Optimum sound volume.
3. Practically undistorted sound reproduction.

Main dimensions:
mounting diameter 194 mm
outer diameter. 205.6 mm
total depth max. 118.3 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight
 (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | type number | | |
| 6 | 5 | 60 | $55-10000$ | 58300 | 13000 | 1.5 |
| 6 | 5 | 60 | $55-18000$ | 58300 | 13000 | 1.5 |

8.5" HIGH-QUALITY LOUDSPEAKERS

Primary application:

Hi -Fi equipment.

Specific properties:

1. Eminently suitable for use in all kinds of Hi-Fi equipment owing to their outstanding reproduction of world-wide fame.
2. Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced due to the coil amplitude being disproportional to the current.
3. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
4. Very smooth response curves owing to the improved cone design.
5. Clear bass response without boom effects, because of the mechanical damping at low frequencies.

Main dimensions:
mounting diameter . . . 203.2 mm
outer diameter. 216.5 mm
total depth max. 111.6 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | total
 magnetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (kg) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| | | | | | | | |
| 10 | 7 | 50 | $40-10000$ | 97600 | 8000 | 1.8 | $9710-01$ |
| 10 | 7 | 50 | $40-19000$ | 97600 | 8000 | 1.8 | 9710M-01 |
| 10 | 800 | 50 | $40-19000$ | 97600 | 8000 | 1.8 | 9710AM-01 |

AD 4000

Main dimensions:
mounting diameter . . . 244 mm outer diameter 261.3 mm total depth max. 136.5 mm

Primary applications:

$\mathrm{Hi}-\mathrm{Fi}$ and stereo equipment; radiograph consoles.

Specific properties:

1. Outstanding quality of reproduction, rendering these types suitable for use in all kinds of Hi - Fi equipment.
2. Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced due to the coil amplitude being disproportional to the current.
3. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
4. Very smooth response curves owing to the improved cone design.
5. Clear bass response without boom effects, because of the mechanical damping at low frequencies.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | total
 magnetic
 flux
 (Mx) | flux
 density
 (G) | weight
 (kg) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | |
| 10 | 7 | 50 | $45-7000$ | 98000 | 8000 | 1.77 | AD4000 |
| 10 | 7 | 50 | $45-18000$ | 98000 | 8000 | 1.77 | AD4000M |
| 10 | 800 | 50 | $45-18000$ | 98000 | 8000 | 1.77 | AD4000AM |

Primary application:

Hi-Fi installations.

Specific properties:

1. High power-handling capacity.
2. Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced due to the coil amplitude being disproportional to the current.
3. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
4. Very smooth response curves owing to the improved cone design.
5. Clear bass response without boom effects, because of the mechanical damping at low frequencies.
6. The acoustic output of types AD4200 is 3 dB lower than that of types AD5200.

Main dimensions:
mounting diameter . . . 294 mm
outer diameter 314.3 mm
total depth max. 155.6 mm

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 $(\mathrm{c} / \mathrm{s})$ | frequency
 range
 $(\mathrm{c} / \mathrm{s})$ | total
 magnetic
 flux
 (Mx) | flux
 density
 (G) | weight | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (kg) | type number | | | | | | |
| | | | | | | | |
| 20 | 7 | 45 | $40-7000$ | 98000 | 8000 | 1.8 | AD4200 |
| 20 | 7 | 45 | $35-17000$ | 98000 | 8000 | 1.8 | AD4200M |
| 20 | 800 | 45 | $35-17000$ | 98000 | 8000 | 1.8 | AD4200AM |

12* HIGH-QUALITY LOUDSPEAKERS

AD5200

Main dimensions:
mounting diameter . . . 294 mm outer diameter 314.3 mm total depth max. 165.6 mm

Primary application:

Hi-Fi installations.

Specific properties:

1. High power-handling capacity.
2. Particularly large air gap, resulting in the voice coil being completely enclosed by a uniform magnetic field even at the largest amplitudes. No distortion will thus be experienced due to the coil amplitude being disproportional to the current.
3. Constant voice-coil impedance throughout the entire frequency range, so that the output stage always has a perfectly matched load.
4. Very smooth response curves owing to the improved cone design.
5. Clear bass response without boom effects, because of the mechanical damping at low frequencies.
6. The acoustic output of types AD5200 exceeds that of types AD4200 by 3 dB .
7. Type AD5200(M) has an extremely high sensitivity thanks to the use of a very powerful TICONAL magnet.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequercy
 range
 (c / s) | magnetic
 flux
 $(M x)$ | flux
 density
 (G) | weight | (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

ALL-ROUND ACOUSTIC BOX WITH SOUND REFLECTOR

Technical data

The all-round acoustic box is supplied in two styles, suitable for any interior: in smart pearl grey imitation leather, and elegant beech veneer.

Type numbers:
AD5043/S (3-8 Ω). . . in pearl grey imitation leather AD5043/M (3-8 Ω) . . in beech veneer

The only tool you need

In order to avoid damage to the various components, the all-round acoustic box is supplied only partially assembled. Assembly is very simple. Clear instructions are enclosed. You can assemble a complete, ready-to-use all-round acoustic box in a few minutes without any special tools. All you need is a screwdriver to fix the seventeen supplied screws into pre-drilled holes.

WOOFER LOUDSPEAKER

AD5201

Notwithstanding the design of the AD5201 being based on the normal electrodynamical principle, a number of striking features make it unique in its kind. The use of new materials and techniques allowed the development of a Hi -Fi speaker which, in conjunction with high and medium-note speakers and housed in an acoustically adequate enclosure, will be found a major contribution towards natural sound reproduction.
Because of its specific design and characteristics, this speaker is a solitary in our programme.

| power-
 handling
 capacity
 (W) | impedance
 at $1 \mathrm{kc} / \mathrm{s}$
 (Ω) | resonance
 frequency
 (c / s) | frequency
 range
 (c / s) | total
 magnetic
 flux
 $(M x)$ | flux
 density
 (G) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 8 | 26 | $25-1000$ | 134000 | weight |
| (kg) | | | | | |

The AT crystals in $\mathrm{HC}-6 / \mathrm{U}$ and $\mathrm{HC}-18 / \mathrm{U}$ holders mentioned in the tables satisfy the requirements of the military specification MIL-C-3098B.

The crystals in all-glass holders HC-27/U satisfy MIL-C-3098C.
They have the following outstanding properties:
a. reduced liability to aging effects;
b. close frequency tolerances at the nominal temperature can be achieved;
c. lower series resistance, thanks to the crystal's working in vacuum.

When applying for quotation or when ordering, please state:

| 1. nominal frequency | $\ldots . \mathrm{kc} / \mathrm{s}$, mode of vibration: | fundamental
 third
 2. a. frequency tolerance
 b. adjustment tolerance
 frequency drift |
| :--- | :--- | :--- |
| | $\ldots \times 10^{-6}$, or | |

3. temperature range.
4. a. parallel resonance, capacitance parallel to unit:...pF, or
b. anti-resonance, capacitance in series to unit i....pF, or
c. series resonance.
5. type of holder.

For non-listed types, please apply in the same manner and submit oscillator circuit with description.

QUARTZ-CRYSTAL UNITS

HOLDERS FOR QUARTZ CRYSTAL UNITS (preferred types)

HC-6/U

Metal

HC-18/U

Metal

HC-25/U

All-glass

HC-26/U

All-glass

HC-27/U

TYPES FOR GENERAL APPLICATIONS

| crystal cut | frequency range | holder | sheet number |
| :---: | :---: | :---: | :---: |
| XY | $9-13 \mathrm{kc} / \mathrm{s}$ | glas - noval B9A, height 72 mm | EP 4801 (3) |
| NT | $34-80 \mathrm{kc} / \mathrm{s}$ | glass - noval B9A, height 72 mm | EP 4802 |
| X | $60-180 \mathrm{kc} / \mathrm{s}$ | glass - noval B9A, height 72 mm
 - noval B9A, height 61 mm miniature B7G, height 61 mm miniature B7G, height 48 mm metal - H1, H2 | EP 4803 |
| | $80-180 \mathrm{kc} / \mathrm{s}$ | | |
| | $80-120 \mathrm{kc} / \mathrm{s}$ | | |
| | $120-180 \mathrm{kc} / \mathrm{s}$ | | |
| | $100-180 \mathrm{kc} / \mathrm{s}$ | | EP 4804 |
| DT | $180-250 \mathrm{kc} / \mathrm{s}$ | glas - noval B9A, height 61 mm miniature $B 7 G$, height 61 mm miniature B 7 G , height 48 mm | EP 4805 |
| | $180-190 \mathrm{kc} / \mathrm{s}$ | | |
| | $190-250 \mathrm{kc} / \mathrm{s}$ | | |
| | $180-250 \mathrm{kc} / \mathrm{s}$ | metal - H1, H2 | EP 4806 |
| | $200-500 \mathrm{kc} / \mathrm{s}$ | metal - HC-6U/, HC-17 U | EP 4807 |
| CT | $250-550 \mathrm{kc} / \mathrm{s}$ | glass - noval B9A, height 61 mm miniature $B 7 G$, height 61 mm miniature B7G, height 48 mm | EP 4808 |
| | 250-280 kc/s | | |
| | $280-550 \mathrm{kc} / \mathrm{s}$ | | |
| | $250-550 \mathrm{kc} / \mathrm{s}$ | metal - H1, H2 | EP 4809 |
| | $300-550 \mathrm{kc} / \mathrm{s}$ | metal - HC-6/U, HC-17/U | EP 4810 |
| HT | | glass - noval B9A, height 61 mm miniature B7G, height 61 mm miniature B7G, height 48 mm metal-H1, H2 | EP 4811 |
| | $550-800 \mathrm{kc} / \mathrm{s}$ | | |
| | $800-850 \mathrm{kc} / \mathrm{s}$ | | |
| | $680-850 \mathrm{kc} / \mathrm{s}$ | | EP 4812 |
| AT
 (pressure mount) | | | EP 4813 |
| | 1.6- $5 \mathrm{Mc} / \mathrm{s}$ | metal - $\mathrm{H} 1, \mathrm{H} 2$ | |
| AT
 (metal-plated, fundamental) | $1.8-20 \mathrm{Mc} / \mathrm{s}$ | $\begin{aligned} & \text { metal - H1, H2, HC-6/U, (HC-17/U) } \\ & \text { metal - HC-18/U, HC25/U } \end{aligned}$ | EP 4814 |
| | 7- $20 \mathrm{Mc} / \mathrm{s}$ | | EP 4818 |
| | 2.4-20 Mc/s | all-glass-HC-27/U | EP 4819 |
| AT | 10-61 Mc/s | metal - HC-6/U, (HC-17/U) | EP 4820 |
| (metal-plated,
 3rd overtone) | 17-61 Mc/s | metal - HC-18/U, HC25/U | EP 4821 |
| | $10-61 \mathrm{Mc} / \mathrm{s}$ | all-glass-HC-27U | EP 4823 |
| AT
 (metal-plated, 5th overtone) | 20-61 Mc/s | $\begin{aligned} & \text { all-glass-HC-26/U } \\ & \text { metal - HC-6/U,(HC-17/U) } \\ & \text { metal - HC-18/U, HC25/U } \\ & \text { all-glass - HC-27/U } \end{aligned}$ | EP 4823A
 EP 4826
 E.P 4827
 EP 4828 |
| | 50-87 Mc/s | | |
| | 50-87 Mc/s | | |
| | 50-87 Mc/s | | |

preferred holders in bold print

QUARTZ-CRYSTAL UNITS

TYPES FOR FREQUENCY STABILIZATION

Preferred holders in bold print
${ }^{2}$) fundamental; ${ }^{\text {2 }}$) 3rd overtone; ${ }^{3}$) 5th overtone; ") For data see EP 4823A F100

QUARTZ-CRYSTAL UNITS

TYPES FOR SPECIAL APPLICATIONS

| application | holder | frequency | crystal cut | sheet number |
| :---: | :---: | :---: | :---: | :---: |
| steering of models | HC-6/U | $\begin{aligned} & 27.125 \mathrm{Mc} / \mathrm{s}^{1} \\ & \text { total tolerance } \pm 1000 \times 10^{-6} \\ & \text { series resonance } \\ & 40.68 \mathrm{Mc} / \mathrm{s}^{1} \\ & \text { total tolerance } \pm 500 \times 10^{-6} \\ & \text { series resonance } \end{aligned}$ | AT | EP4820 |
| | | $\begin{aligned} & 13.56 \mathrm{Mc} / \mathrm{s}^{1} \\ & \text { total tolerance } \pm 500 \times 1 \mathrm{C-6} \\ & \mathrm{C}_{\mu}=30 \mathrm{pF} \end{aligned}$ | | EP4814 |
| SSB systems or secondary standards | $\mathrm{HC}-27 / \mathrm{U}$ | $\begin{aligned} & 10 \mathrm{Mc} / \mathrm{s}^{4} \\ & 3_{11} \text { overtone } \\ & \text { total tolerance } \pm 5 \times 10^{-6} \\ & \mathrm{C}_{\mu}=75 \mathrm{pF} \\ & \text { series resistance } 40 \Omega \\ & \left(-40^{\circ} \mathrm{C} \text { to }+75^{\circ} \mathrm{C}\right) \end{aligned}$ | AT | EP4825 |
| measuring equipment | HC-6/U | $\begin{aligned} & 4.5 \mathrm{Mc} / \mathrm{s}^{2} ; 5.5 \mathrm{Mc} / \mathrm{s}^{2} \\ & 6.75 \mathrm{Mc} / \mathrm{s}^{2} ; 10.7 \mathrm{Mc} / \mathrm{s}^{2} \\ & \text { total tolerance } \pm 100 \times 10.6 \\ & \mathrm{C}_{\mu}=30 \mathrm{pF} \end{aligned}$ | AT | EP4814 |
| decade counting unit type 88929/09.1 | B9A | ```10 kc/s}\mp@subsup{}{}{3 total tolerance }\pm100\times1\mp@subsup{0}{}{-6 series resistance max. 1500\Omega``` | $X Y$ | EP4801 |
| measuring and telecommunication equipment | B9A | $\begin{aligned} & 100 \mathrm{kc} / \mathrm{s}^{1} \\ & \text { total tolerance } \pm 100 \times 10^{-6} \\ & C_{\mu}=75 \mathrm{pF} \\ & \text { series resistance } \geq 1000 \Omega \end{aligned}$ | x | EP4803 |

Temperature range: ${ }^{1}$) $0-+60^{\circ} \mathrm{C}$; ${ }^{2}$) $-20-+70^{\circ} \mathrm{C}$; $\left.^{9}\right)+10-+70^{\circ} \mathrm{C}$; ${ }^{4}$) $+69^{\circ} \mathrm{C}$ to $71^{\circ} \mathrm{C}$.

AD90.. series - AUDIO TRANSFORMERS

FOR PUSH-PULL CIRCUITS WITH TUBES

| type number | AD 9030/03 | AD 9032 | AD 9047 | AD 9058 |
| :---: | :---: | :---: | :---: | :---: |
| primary impedance(2$)$ | 9,000 | 6.600 | 6,600 | 9.000 |
| secondary impedance(S) | 7-14 | 7-14 | 7-14 | 7-14 |
| power. (W) | 15 | 15 | 35 | 15 |
| efficiency at $400 \mathrm{c} / \mathrm{s}$. (\%) | 90 | 88 | 86 | |
| transformation ratio | 36-25 | 30-22 | 31-22 | |
| primary inductance (H) | 28 | 28 | 70 | 67 |
| DC bias magnetization (mA) | 5 | 5 | 5 | 5 |
| primary resistance (Ω) | 350 | - 3035 | 480 | 320 |
| frequency response between -3 dB points (c / s) | 20-60,000 | 20-60,000 | 10-60,000 | 10-100,000 |
| (reference l distortion is 1% at (c/s) | 60 | 60 | 30 | |
| | $\begin{array}{r} 2 \times E L 84 \\ 2 \times \text { UCL82 } \\ 2 \times E C L 82 \end{array}$ | $2 \times$ EL84 | $2 \times$ EL34 | $\begin{gathered} 2 \times \text { ECL86 } \\ 2 \times \text { EL84 } \end{gathered}$ |

AD9030/03 AD9032

AUDIO TRANSFORMERS - AD90.. series

FOR PUSH-PULL CIRCUITS WITH TRANSISTORS

| type number | AD 9015 | AD 9049 | AD 9051 | AD 9054 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | $V_{S}=7 \mathrm{~V}$ | $\mathrm{v}_{\mathrm{S}}=14 \mathrm{~V}$ |
| primary impedance . (Ω) | 360 | 52 | 98 | 7 | 41 |
| secondary impedance. (Ω) | 3 | 3 | 3 | 3-5 | |
| power. (W) | 0.2 | 0.3 | 0.75 | 8 | |
| efficiency at $400 \mathrm{c} / \mathrm{s}$. (\%) | 85 | 85 | 80 | 70 | |
| transformation ratio . | 11 | 4.2 | 5.7 | 1.6-1.25 | 3.65-2.85 |
| primary inductance . (H) | 0.6 | 0.3 | 0.48 | 0.2 | |
| $\begin{aligned} & \text { DC bias magnetiza- } \\ & \text { tion } \cdot \cdot \cdot \cdot(\mathrm{mA}) \end{aligned}$ | - | - | - | - | |
| primary resistance , (Ω) | 16 | 2.6 | 9.5 | 2.13 | |
| ```frequency response between -3dB points (c/s) (reference 1 kc/s)``` | 45-35,000 | 50-10,000 | 50-10,000 | 10-10,000 | |
| distortion is 1% at - (c/s) | 160 | - | - | 90 | |
| | $2 \times 0 \mathrm{C} 72$ | $2 \times 0<74$ | $2 \times 0 \mathrm{C74}$ | $2 \times$ OC26 | |

AD9015

AD9049

AD9051

AD90.. series - AUDIO TRANSFORMERS

FOR SINGLE-ENDED CIRCUITS WITH TUBE OR TRANSISTOR

| type number | AD 9008 | AD 9018 | AD 9020 | AD 9022 | AD 9056 | AD 9057 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| primary impedance . . (S) | 5,400 | 2,400 | 5,400 | 2,400 | 8 | 7000 |
| secondary impedance . . (2) | 3-5 | 3-5 | 3-5 | 3-5 | 3-5 | 3-5 |
| power W) | 3 | 6 | 6 | 3 | 2 | 3 |
| efficiency at $400 \mathrm{c} / \mathrm{s}$. . (\%) | 75 | 75 | 76 | 82 | 80 | - |
| extra windings: | | | | | | |
| anti-hum . . (\% of $\mathrm{N}_{\text {prim }}$) | 10 | 2.3 | - | - | - | - |
| feed-back . (\% or $N_{\text {sel }}$) | - | 74 | 112 | 77 | - | |
| transformation ratio . . | 45-34 | 31-22 | 46-33 | 29-22 | 1.67-1.3 | - |
| primary inductance . . H) | 10 | 6.5 | 10 | 2.5 | 0.019 | 10,5 |
| DC bias magnetization (mA) | 36 | 70 | 40 | 65 | 570 | 36 |
| primary resistance. . . (2) | 550 | 320 | 540 | 200 | 0.75 | 495 |
| between -3dB points . (c/s) | 50-10,000 | 4,5-10,000 | 40-20,000 | 60-15,000 | 10-6,000 | 10-100,000 |
| distortion is 1% at . . (c/s) | 60 | 55 | 65 | 75 | 70 | |
| | ECL 82 | UL 84 | ECL 82 | UL 84 | OC 26 | ECL 86 |
| | UCL 82 | | UCL 82 | | | |
| | EL 84 | | EL 84 | | | |

Dimensions (mm)

| type number | a | b | c | d | e | f |
| ---: | :---: | :---: | :---: | ---: | ---: | ---: |
| AD 9008 | 40 | 32 | 16 | 36.5 | 38 | 41 |
| 9018 | 50 | 40 | 20 | 41 | 45.5 | 49 |
| 9020 | 50 | 40 | 20 | 41 | 45.5 | 49 |
| 9022 | 40 | 32 | 16 | 36.5 | 38 | 41 |

AD9008

AUDIO TRANSFORMERS - AD90.. series

FOR DRIVER-CIRCUITS WITH TRANSISTOR(S)

| type number | AD 9014 | AD 9048 | AD 9050 | AD 9053 | AD 9055 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| efficiency at $400 \mathrm{c} / \mathrm{s}$. . $\%$ | 70 | 70 | 75 | 95 | 95 |
| | 1 | 0.65 | 1.15 | 1.24 | 6.45 |
| primary inductance | 10 | 1.1 | 3.4 | 0.44 | 1.6 |
| | 1 | 4.5 | 4 | 75 | 15 |
| primary resistance. | 400 | 106 | 123 | 4 | 60 |
| frequency response between -3dB points (c/s) | 20-40,000 | 50-10,000 | 50-10,000 | 10-60,000 | 10-10,000 |
| | OC 71 | $\begin{array}{r} \text { OC71 or } \\ \text { OC } 75 \end{array}$ | | OC 79 | OC 72 |
| | | | | | |
| | $2 \times$ OC 72 | $2 \times O C 74$ | | $2 \times$ OC 26 | OC 26 |

AD 9014

AD 9048

AD 9050

AD 9053

AD 9055

AD90.. series - MAINS TRANSFORMERS

F106

These transformers have been designed for controlling line voltages.
The output can be varied from zero to approximately 15% above the line voltage.
They consist of a toroidal coil wound on a laminated annular core. The insulation of each turn is partly stripped to form a contact track for the slider. The coil has up to three taps: one at each end at 18%. of the total turns and one centre tap.
The slider contact can be easily removed.

General Data:

Rated input voltage 130, 220 and $240 \mathrm{~V}_{\mathrm{ac}}+5 \%$
Frequency 50. . $400 \mathrm{c} / \mathrm{s}$
Rated current 1-90A
Angle of rotation approx. 320°
Ambient temperature -20 to $+40^{\circ} \mathrm{C}$
Rise of coil temperature at max. load $\leq 55^{\circ} \mathrm{C}$ average
Insulation between frame and coil (after climatic
test: 21 days at $40^{\circ} \mathrm{C}, 90$ to 95% r.h. IEC $68-\mathrm{C}$) . $\geqslant 5 \mathrm{M} \Omega$
High voltage test (1 minute) 2000 V rms
Air gap between hot and cold parts $\geqslant 4 \mathrm{~mm}$
Leakage path between hot and cold parts $\geqslant 5 \mathrm{~mm}$
Operational life $>\mathbf{2 5 0 0 0 0}$ complete turns
Shock test, worst case mounting position 1500 falls from 25 mm
Vibration test (24 hours) 05 mm amplitude, $50 \mathrm{c} / \mathrm{s}$

E401 series - VARIABLE TRANSFORMERS

SURVEY OF STANDARD RANGE

| panel models | | bench models | | laboratory models | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| with knob
 B model | without knob
 K model | with knob
 A model | without knob
 C model | with binding posts G model | with earthed output socket H model |
| $\begin{array}{r} \mathrm{E} 401 \mathrm{BA} / 023 \\ 045 \\ 090 \end{array}$ | $\begin{array}{r} \mathrm{E} 401 \mathrm{KA} / 023 \\ 045 \\ 090 \end{array}$ | $\begin{array}{r} \mathrm{E} 401 \mathrm{AA} / 023 \\ 045 \\ 090 \end{array}$ | $\begin{array}{r} \mathrm{E} 401 \mathrm{CA} / 023 \\ 045 \\ 090 \end{array}$ | E401GA/090 | |
| B/010 | B/010 | B/010 | B/010 | | E401HB/010 |
| 020 | 020 | 020 | 020 | | 020 |
| 040 | 040 | 040 | 040 | B/040 | 040 |
| 080 | 080 | 080 | 080 | 080 | 080 |
| 200 | 200 | 200 | 200 | | |
| E/010 | E/010 | E/010 | E/010 | | |
| 020 | 020 | 020 | 020 | | |
| 040 | 040 | 040 | 040 | C/040 | |
| 080 | 080 | 080 | 080 | 080 | |
| 200 | 200 | 200 | 200 | | |

[^48]F108

1-10A - VARIABLE TRANSFORMERS - E401 series

PANEL MODELS

Fanel model B with knob

Panel model K without knob

| $\begin{gathered} \text { Type: } \\ \text { E.401B./... E401K./... } \end{gathered}$ | | | Dimensions: | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | H | D | A | d | d_{1} | d_{2} | t | b | k | L |
| A/023 | B/010 | E/010 | 110 | 106 | 63 | 93 | 56 | 67 | M4 | 71 | 21 | 153 |
| 045 | 020 | 020 | 112 | 127 | 74 | 110 | 56 | 67 | M4 | 71 | 21 | 153 |
| 090 | 040 | 040 | 117 | 158 | 92 | 140 | 106 | 93 | M6 | 84 | 24 | 157 |
| | 080 | 080 | 120 | 185 | 106 | 168 | 106 | 93 | M6 | 84 | 24 | 157 |

The standard spindle with knob is 139 mm long
Any spindle length of 8 mm diameter (fit h9) can be used

E401 series - VARIABLE TRANSFORMERS - 1-10A

BENCH MODELS

Bench model A with knob and resilient pads

Bench model C without knob and pads

| $\begin{gathered} \text { Type } \\ \text { E401A. } / \ldots \text {. E401C. } / . . \end{gathered}$ | | | Dimensions | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | H | D | A | a | b | k |
| A/023 | B/010 | E/010 | 122 | 113 | 79 | 99 | 77 | 21 |
| 045 | 020 | 020 | 123 | 134 | 93 | 100 | 77 | 21 |
| 090 | 040 | 040 | 131 | 166 | 117 | 106 | 92 | 24 |
| | 080 | 080 | 133 | 193 | 134 | 106 | 92 | 24 |

The resilient pads protrude approximately 5 mm . The spindle can be set to protrude up to approximately 30 mm above the cover.

Laboratory model H with earthed socket and secundary fuse

Laboratory model G with binding posts

20A-E401 series - VARIABLE TRANSFORMERS

PANEL MODELS

Panel model B with knob

Panel model E401B./200 with knob

Panel model K without knob

Bench model A with knob and feet

Bench model C without knob and feet

Bench model A with knob and feet

STACKING SETS

Three bench models 220V/20A (B/200types) stacked and paralleled, using 2 chokes.

Three panel models 220V/8.5A
(B/080 types) stacked for 3 phase Y -operation

[^49]
E401 series - VARIABLE TRANSFORMERS

MOTOR DRIVE MODULE

Pinion set type 84543 for matching the entire AU5300/80. . series of gearboxes to the motor drive.

Panel model E401KB/080 with motor drive.

A motor drive module is available for most of the E401 series variable transformers, either stacked or individual. Two types of motor combined with a choice of gearboxes can rotate the variable transformers over 320°, from limit to limit, in 6, 15, 30, or 60 sec .

Protective-cover set.

MOTOR DRIVE MODULE

A motor-driven variable transformer, either stacked or individual, can be build up of the following parts:

| TransformersE401../... | rotation time (limit to limit) | | | | | $\begin{gathered} \text { stacking } \\ \text { set } 84539 / . \end{gathered}$ | | | |
|---|---|---|---|---|---|---|---|---|---|
| | 6 sec | 15 sec | 30 sec | 60 sec | 120 sec | | |
| | number of transformers | | | | | | |
| | 123 | 123 | 123 | 123 | 123 | 1 | more |
| | use motor | | | | | | |
| A/023 | $\times \times$ | - $\times \times$ | - $0 \times$ | $\bigcirc \circ \circ$ | $\bigcirc 00$ | 104 | 104 |
| /045 | $\times \times$ | o $\times \times$ | $\bigcirc 0 \times$ | $\bigcirc \circ \bigcirc$ | $\bigcirc 00$ | 104 | 104 |
| 1090 | $\times \times$ | - $\times \times$ | - $\times \times$ | $\bigcirc \circ \bigcirc$ | $\bigcirc \circ \circ$ | 103 | 102 |
| B/010 E/010 | x x | $\bigcirc \times$ | $\bigcirc 0 \times$ | $\bigcirc 00$ | $\bigcirc 00$ | 104 | /04 |
| 10201020 | $\times \times$ | $0 \times$ | $\bigcirc 0 \times$ | $\bigcirc \circ \circ$ | $\bigcirc \circ \circ$ | 104 | 104 |
| 10401040 | $\times \times$ | - $\times \times$ | $0 \times \times$ | $\bigcirc \circ \circ$ | $\bigcirc 00$ | 103 | 102 |
| $1080 \quad 1080$ | \times | $0 \times x$ | $\bigcirc \times \times$ | $\bigcirc 0 \times$ | 000 | 103 | /02 |
| with gear box | | | | | | | |
| type $84540 / \ldots$ | 16 $/ 15$ $/ 30$ 160 $/ 120$
 see booklet "Small synchronous
 motors
 and | | | | | | |
| or AU5300/80...3 | | | | | | | | | |

[^50]
E401 series - VARIABLE TRANSFORMERS

MINIATURE TYPE 0.7 A

The miniature transformers are molded in reinforced polyester resin. The construction is rugged and professional. The mounting hole pattern is simple, the support area is relatively wide, and the transformers are light enough to be mounted on thin chassis or panels.

Type number: 2P 25050

The spindle of this model is adjustable in length protruding at both sides. A different spindle of s:itable length can be fitted.
Max. input voltage.
$240 \mathrm{~V}+5 \%$ (connected to $\mathrm{K}-\mathrm{N}$)
$220 \mathrm{~V}+5 \%$ (connected to $\mathrm{K}-\mathrm{M}$)
$0-240 \mathrm{~V}$ (Input connected to $\mathrm{K}-\mathrm{I}$
0.7 A over the whole range
$50-500 \mathrm{c} / \mathrm{s}$
2 W
2000 V during 1 minute
$-15 \mathrm{to}+40^{\circ} \mathrm{C}$ without derating
Conform I.E.C. 68 , test $\mathrm{C}-21$ days
$70^{\circ} \mathrm{C}$

No-load output voltage . . . $0-240 \mathrm{~V}$ (Input connected to $\mathrm{K}-\mathrm{M}$)
Nominal current 0.7 A over the whole range
Frequency 50-500 c/s
No-load losses
Test voltage 2000 V during 1 minute
Temperature range -15 to $+40^{\circ} \mathrm{C}$ without derating
Climatic conditions Conform I.E.C.68, test C -21 days
Max. permissible temp.
rise at any point.

MINIATURE TYPE 0.5 A

$$
\begin{aligned}
& \text { frequency . . . } 50-400 \mathrm{c} / \mathrm{s} \\
& \text { insulation resistance } 10,000 \mathrm{M} \Omega \text { between winding } \\
& \text { and spindle } \\
& \text { test voltage . . } 2 \mathrm{kV} \mathrm{rms}_{\mathrm{m}}-50 \mathrm{c} / \mathrm{s} \text { during } 1 \mathrm{~min} \\
& \text { life in excess of } 500,000 \text { complete } \\
& \text { revolutions } \\
& \text { climatic conditions conform to IEC 68, test } C \\
& \text { mounting . . . threaded bush } \\
& \text { operating torque. max. } 500 \mathrm{gr}
\end{aligned}
$$

Type E 401 zZ
Some of these transformers are wound in two layers. The slide contact tracks only the upper layer and so only one half of the primary voltage is tapped.

| max. input
 voltage
 (V) | output
 terminals | voltage (V)
 $\left(I_{\text {out }}=0\right)$ | turn $^{1}$ | rated
 current
 $I_{\text {nom }}(A)$ | voltage ${ }^{2}$
 A-C at $I_{\text {nom }}$
 (V) | loss at
 $I_{\text {out }}=0$ | type
 number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 240 | CB | $120 \ldots .240$ | CW | 0.5 | 20 | 0.8 | E 401 ZZ/01 |
| | CA | $0 . .120$ | CCW | | | | 0.9 |

[^51]
B870... series - VARIABLE TRANSFORMERS

MODELS WITH SEPARATE WINDINGS, ELECTROSTATICALLY SCREENED

B8 709 00/02

B8 70950/01

| input voltage
 (V) | output voltage | | range | max. output current I nom. (A) | max. no-load losses (W) | voltage per turn (V) | operating torque (kg cm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | no-load
 (V) | nominal (V) | | | | | |
| 180 | 260 | 240 | 1 | 1.5 | 5 | 0.58 | 2 |
| | 215 | 196 | II | 1.5 | 3.5 | 0.48 | 2 |
| 220 | 320 | 300 | 1 | 1.5 | 7.5 | 0.71 | 2 |
| | 265 | 240 | II | 1.5 | 5 | 0.58 | 2 |
| 240 | 350 | 330 | 1 | 1.5 | 11 | 0.77 | 2 |
| | 285 | 265 | II | 1.5 | 6 | 0.63 | 2 |

Range I. Line voltage connected to terminals A-C for panel mounting type B8 $70950 / 01$ or laboratory type B8 70700/02 at "0-300 V' position.
Range II. Line voltage connected to terminals A-B for panel mounting type B8 $70950 / 01$ or switch-off type B8 $70900 / 02$ at " 0 -240 V' position. Output terminals $\mathrm{E}-\mathrm{T}$

For further electrical and climatic data see page F71

Soft magnetic materials

Ferroxcube 3 \& 4
Survey of symbols G 4
Main applications, maximum loss factor, properties G 6
Antenna rods and plates G 11
Rods and tubes for small coils e.g. IF transformers G 14
Screw cores and cup cores G 15
Piece parts and mounting parts for small IF coils G 16
Yoke rings for use in deflection coils for 110° picture tubes G 18
Damping beads and wide-band chokes. G 20
U-cores for line-output transformers G 21
Piece parts for erasing heads. G 24
Potcores
P-series, introduction, electrical properties G 25
Available types G 28
Accessories and mounting parts G 29
Survey of potcore and coil former dimensions. G 32
Pre-adjusted types G 33
Continuous inductance-adjustors G 34
Type P11/7 etc. G 38
E and I cores G 46
Cross cores $-\times 22, \times 30, \times 35$ series G 56
S-series
Pre-adjusted types G 62
Half-core types G 63
H-series - H7, H10, H2O G 64
Toroids - A, B, C, D series G 68
Ferroxcube 6 (square loop)
Magnetic memory cores G 70
Ferroxcube 7
Ultrasonic transducers G 71
Ferroxplana
1 Z2 series G 75
Powder iron
Piece parts and mounting parts for small IF coils. G 76

FERROXCUBE 3 \& 4

SURVEY OF SYMBOLS

I_{e}. length of the magnetic path in cm
A_{e}. cross-section of a homogeneous part of the core in cm^{2}
μ_{i}. relative initial permeability, defined by:

$$
\mu_{i}=\lim _{\mathrm{H} \rightarrow 0} \mathrm{~B}
$$

μ_{e}. relative effective permeability, defined by

$$
\mu_{e}=\frac{\Sigma \frac{1}{\mathrm{~A}}}{\sum \frac{1}{\mu_{i} \mathrm{~A}}}
$$

V_{e}. effective volume of a potcore in $\mathrm{cm}^{3}=$ volume of an ideal toroid in the same material grade and with the same magnetic properties as the potcore. V_{e} is calculated by:

$$
V_{e}=\frac{\left(\Sigma^{\prime} \frac{I}{A}\right)^{3}}{\left(\Sigma_{A^{2}}\right)^{2}} \mathrm{~cm}^{3}
$$

1
length of the air gap in mm
α. turns factor $=$ number of turns for 1 mH
A_{L}. inductance factor $=$ inductance for one turn in nanohenry $\left(10^{-9} \mathrm{H}\right)$
H peak field strength in oersted
\widehat{B}
peak induction in gauss
AT amperes \times turns
T.F. $=\frac{1}{\mu^{2}} \cdot \frac{\mathrm{~d} / \ell}{\mathrm{d} T} . .$. temperature factor $=$
value for a certain ferroxcube material over a certain temperature range. In order to calculate the temperature coefficient per ${ }^{\circ} \mathrm{C}$ of a coil the temperature factor has to be multiplied by the effective permeability.

So

$$
\text { t.c. }=\frac{A \mu}{\mu_{i}} \times \frac{\mu_{e}}{\mu_{i}}=\frac{\mathcal{A} \mu}{\mu_{i}{ }^{2}} \times \mu_{e} \operatorname{per}^{\circ} \mathrm{C}
$$

FERROXCUBE 3 \& 4

D.F. $=\frac{\mu_{1}-\mu_{2}}{\mu_{1}^{2} \log _{t_{2}}^{t_{2}}} . \begin{aligned} & \text { disaccommodation factor, which gives the permeability varia- } \\ & \text { tion of the core, measured between } 10 \text { and } 100 \text { minutes after } \\ & \text { demagnetization. }\end{aligned}$

Curie point critical temperature in ${ }^{\circ} \mathrm{C}$ above which the ferromagnetic body is paramagnetic.
$\frac{\tan \delta}{\mu_{i}}$
constant for eddy current and residual losses together at a certain frequency, determined at $\ddot{B} \leq 1$ gauss through the coil. The resulting R / L value for eddy current and residual losses is:

$$
\frac{\mathrm{R}}{\mathrm{~L}}=\frac{\tan \delta}{\mu_{i}} \times \mu_{e} \times 2 \pi \mathrm{f} \quad \Omega / \mathrm{H} \quad(\mathrm{f} \text { in } \mathrm{c} / \mathrm{s})
$$

$\mathrm{q}_{2-24-100}$. constant for hysteresis losses standardized for an effective volume of $24 \mathrm{~cm}^{3}, \mu_{e}=100$ and measured between two currents, corresponding to two $\mathrm{B}_{\max }$ values, stated in the ferroxcube catalogue.
At $800 \mathrm{c} / \mathrm{s}$, for a given volume V_{e}, and for an equivalent permeability μ_{e}, we obtain:

$$
\begin{aligned}
\mathrm{q}_{2-\mathrm{V}-\mu}= & \mathrm{q}_{2-24-100} \times\left\{\begin{array}{c}
\mu_{e} \\
100
\end{array}\right\}^{3 / 2} \times \sqrt{\frac{24}{\mathrm{v}_{e}} \Omega / \mathrm{H}^{3 / 2} \mathrm{~mA}} \\
\frac{\mathrm{R}_{h}}{\mathrm{~L}}= & \mathrm{q}_{2-\mathrm{V}-\mu} \times \sqrt{\mathrm{L}} \times \mathrm{i} \times \frac{\mathrm{f}}{800} \Omega \mathrm{H} \\
& (\mathrm{~L} \text { in henry, fin } \mathrm{c} / \mathrm{s} \text { and } \mathrm{i} \text { in } \mathrm{mA})
\end{aligned}
$$

@ specific resistance in $\Omega . c \mathrm{~m}$ measured with d.c.

FERROXCUBE 3 \& 4

MAIN APPLICATIONS

Ferroxcube is the name given to the ceramic soft magnetic core material produced by our factories. Owing to its excellent properties, this material more and more supersedes metallic core materials. Thanks to the high electrical resistivity the eddy current losses in the material are extremely low, even at high frequencies, so the troublesome process of laminating the core can be avoided. Hence ferroxcube is supplied as ready-shaped piece parts the forms of which have been adapted to the required magnetic circuit.

| grade | application |
| :--- | :--- |
| 3B2, 3B3 | frames for IF transformers, potcores, rods, screw cores |
| 3B5 | potcores |
| 3B7 | potcores |
| 3C2 | yoke rings, erasing heads |
| 3C4 | U-cores |
| 3C6 | U-cores |
| 3D3 | antenna rods, potcores, screw cores |
| 3E1 | E- and I-cores, toroids, potcores |
| 3E2 | H-cores, small toroids |
| 3H1 | potcores, E- and I-cores, small toroids, cross cores |
| 4A1 | potcores, E-cores, small toroids |
| 4A3 | antenna rods (long and medium wave) |
| 4B1 | antenna rods, frames for IF transformers |
| 4C3 | antenna rods |
| 4C4 | small potcores and small toroids |
| 4D1 | frames for IF transformers, screw cores |
| 4E1 | frames for IF transformers, screw cores |

Mechanical data

FERROXCUBE 3 \& 4

MAXIMUM LOSS FACTOR

Ferroxcube 3 grades

| | | $3 B 2$ | $3 B 3$ | $3 B 5$ | $3 B 7$ | 3 C 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| frequency
 $(\mathrm{kc} / \mathrm{s})$ | at | $\frac{\tan \delta}{\mu_{i}}$ | $\frac{\tan \delta}{\mu_{\mathrm{f}}}$ | $\frac{\tan \delta}{\mu_{i}}$ | $\frac{\tan \delta}{\mu_{i}}$ | $\mathrm{~mW} / \mathrm{cm}^{\mathrm{s}}$ |
| 4 | $\leqq 1$ gauss; $25^{\circ} \mathrm{C}$ | 7×10^{-6} | | 2.5×10^{-6} | 1×10^{-6} | |
| 16 | 1000 gauss $; 25^{\circ} \mathrm{C}$ | | | | | 65 |
| 16 | 1000 gauss $; 85^{\circ} \mathrm{C}$ | | | | | 65 |
| 16 | 2000 gauss $; 85^{\circ} \mathrm{C}$ | | | | | 230 |
| 100 | $\leqq 1$ gauss $; 25^{\circ} \mathrm{C}$ | 18×10^{-6} | 15×10^{-6} | 10×10^{-6} | 5×10^{-6} | |
| 250 | $\leqq 1$ gauss $; 25^{\circ} \mathrm{C}$ | | 27×10^{-6} | | | |
| 450 | $\leqq 1$ gauss $; 25^{\circ} \mathrm{C}$ | | 50×10^{-6} | | | |

| | | 3 Cb | 3 DO 3 | 3 E 1 | 3 E 2 | 3 H 1 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| frequency
 $(\mathrm{kc} / \mathrm{s})$ | at | $\mathrm{mW} / \mathrm{cm}^{3}$ | $\frac{\tan \delta}{\mu_{i}}$ | $\frac{\tan \delta}{\mu_{i}}$ | | $\frac{\tan \delta}{\mu_{i}}$ |
| 4 | $\leqq 1$ gauss; $25^{\circ} \mathrm{C}$ | | | 2.5×10^{-6} | | 1×10^{-6} |
| 16 | 2000 gauss; $25^{\circ} \mathrm{C}$ | 150 | | | | |
| 16 | 2000 gauss; $10^{\circ} \mathrm{C}$ | 120 | | | | 5×10^{-6} |
| 100 | $\leqq 1$ gauss; $25^{\circ} \mathrm{C}$ | | 8×10^{-6} | 15×10^{-6} | | |
| 500 | $\leqq 1$ gauss; $25^{\circ} \mathrm{C}$ | | 14×10^{-6} | 90×10^{-6} | | |
| 1000 | $\leqq 1$ gauss; $25^{\circ} \mathrm{C}$ | | 30×10^{-6} | | | |

Ferroxcube 4 grades

| | $4 \mathrm{A1}$ | 4 A 3 | 4B1 | $4 \mathrm{C3}$ | $4 \mathrm{C4}$ | $4 \mathrm{D1}$ | 4E1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| quency | $\boldsymbol{t a n} \delta$ | $\tan \delta$ | $\tan \delta$ | $\boldsymbol{\operatorname { t a n }} \delta$ | $\boldsymbol{t a n} \delta$ | $\tan \delta$ | $\tan \delta$ |
| (Mc/s) | μ_{i} |
| 0.450 | 65×10^{-6} | | | | | | |
| 0.700 | 100×10^{-6} | | 70×10^{-6} | | | | |
| 1 | 150×10^{-6} | | 90×10^{-6} | | | | |
| 1.5 | | 40×10^{-6} | 140×10^{-6} | | | | |
| 2 | | 60×10^{-6} | | | 40×10^{-6} | | |
| 3 | | | | | | 180×10^{-6} | |
| 5 | | | | | 60×10^{-6} | 210×10^{-6} | |
| 10 | | | | 100×10^{-6} | 100×10^{-6} | 300×10^{-6} | 300×10^{-6} |
| 15 | | | | 150×10^{-6} | | | |
| 20 | | | | 200×10^{-6} | | | 300×10^{-6} |
| 40 | | | | | | | 360×10^{-6} |

FERROXCUBE 3 \& 4

PROPERTIES

| | | 3B2 | 3 B 3 | 3B5 | 387 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| initial permeability. | μ_{i} | $900 \pm 20 \%$ | $900 \pm 20 \%$ | $1400 \pm 25 \%$ | $2300 \pm 20 \%$ |
| temperature factor of initial permeability | $\frac{1}{\mu_{i}{ }^{2}} \cdot \frac{d \mu}{d T}$ | | | | |
| between +23 and $+55^{\circ} \mathrm{C}$. . | | $\begin{gathered} (0 \text { to }+2) \\ \times 10^{-6} \end{gathered}$ | $\begin{gathered} (0 \text { to }+2) \\ \times 10^{-6} \end{gathered}$ | $\begin{gathered} 0.5 \times 10^{-6} \\ t 0 \\ +2.3 \times 10^{-6} \end{gathered}$ | |
| between +23 and $+70^{\circ} \mathrm{C}$. | | - | - | - | $\begin{gathered} -0.6 \times 10^{-6} \\ \text { to } \\ +0.6 \times 10^{6} \end{gathered}$ |
| curie temperature (${ }^{\circ} \mathrm{C}$). | T_{c} | ≥ 150 | ≥ 150 | ≥ 150 | ≥ 170 |
| disaccommodation between 10 and 100 min . after demagnetization at $23^{\circ} \mathrm{C}$ | $\frac{\mu_{1}-\mu_{2}{ }^{1}}{\mu_{1}{ }^{2} \cdot \log \frac{\tau_{2}}{t_{1}}}$ | $\leq 11 \times 10^{-6}$ | $\leq 11 \times 10^{-6}$ | $\leq 7.5 \times 10^{-6}$ | $\leq 4.3 \times 10^{-6}$ |
| magnetic induction at $\mathrm{H}(\mathrm{Oe})=$ | | 10 | 10 | 10 | 10 |
| $\text { at } 25^{\circ} \mathrm{C}$ | $\left(\mathrm{B}_{\text {sat }}\right) 25$ | 3650 | 3500 | 3950 | 4350 |
| at $70^{\circ} \mathrm{C}$ (gauss) | $\left(\mathrm{B}_{\text {sat }}\right) 70$ | 2800 | 2800 | 3150 | 3500 |
| hysteresis factor. | $\mathrm{q}_{2-24-100}$ | | | | |
| $\text { at } 4 \mathrm{kc} / \mathrm{s} \ldots\binom{\Omega}{\mathrm{H}^{3 / 2} \mathrm{~mA}}$ | - | ≤ 12 | ≤ 12 | ≤ 2.5 | ≤ 1.8 |
| specific d.c. resistance ($\Omega . \mathrm{cm}$) | ϱ | ≥ 80 | ≥ 120 | ≥ 20 | ≥ 100 |

${ }^{1} t_{1}=10$ minutes, $t_{2}=100$ minutes

FERROXCUBE 3 \& 4

PROPERTIES

FERROXCUBE 3 \& 4

PROPERTIES

RODS ${ }^{1}$
Grade 4A3

| dimensions | type number |
| :---: | :---: |
| $(09.8 \pm 0.3) \times(240 \pm 8)$ | 431102052621 |
| $\times(220 \pm 1)$ | 431102052741 |
| $\times(200 \pm 1)$ | 431102052581 |
| $\times\left(180{ }_{-6}^{+1}\right)$ | 431102052751 |
| $\times(160 \pm 1)$ | 431102052611 |
| $\times(150 \pm 1)$ | 431102052771 |
| $\times(140 \pm 1)$ | 431102052601 |
| $\times\left(130 \pm \begin{array}{l}\text { - }\end{array}\right)$ | 431102052781 |
| $\times\left(100 \pm \begin{array}{l}1 \\ -3\end{array}\right)$ | 431102052591 |
| $(\varnothing 7.8 \pm 0.2) \times(190+1)$ | 431102052701 |
| $\times(140+1)$ | 431102052691 |
| $\times\left(100 \pm \begin{array}{l}\text { - }\end{array}\right)$ | 431102052791 |
| $(\varnothing 6.35 \pm 0.2) \times\left(130 \pm \begin{array}{l}\text { - }\end{array}\right)$ | 431102052801 |

[^52]Grade 4B1

| dimensions | type number |
| :---: | :---: |
| $(\varnothing 9.7 \pm 0.3) \times(240 \pm 8)$ | 431102052331 |
| $\times\left(200 \pm{ }_{-3}^{+9}\right)$ | 312210491251 |
| $\times(175 \pm 5)$ | 431102052241 |
| $\times(140 \pm 5)$ | 312210491241 |
| $\times(130 \pm 2)$ | 431102052231 |
| $(\varnothing 7.8 \pm 0.2) \times(190 \pm 4)$ | 431102052551 |
| $\times(140 \pm 3)$ | 431102050251 |
| $\times(100 \pm 2)$ | 431102052171 |
| $(\varnothing 6.5-0.3) \times(130 \pm 05)$ | 312210491801 |

ANTENNA RODS AND PLATES

RODS

Grade 3D3

| dimensions | type number |
| :---: | :---: |
| $(\varnothing 9.7 \pm 0.4) \times(240 \pm 6)$ | 431102051521 |
| $\times\left(200{ }_{-2}^{+8}\right)$ | 431102051051 |
| $\times(175 \pm 4)$ | 431102051131 |
| $\times(160-2)$ | 431102051351 |
| $\times(150-4)$ | 431102052001 |
| $\times(140-4)$ | 431102051931 |
| $\times(100 \pm 2)$ | 431102051211 |
| $(\varnothing 7.5 \pm 0.3) \times(140 \pm 3)$ | 431102051271 |
| $\times(125 \pm 2.5)$ | 431102051831 |
| $(\varnothing 6.35 \pm 0.3) \times(130 \pm 3)$ | 431102051641 |

Grade 4C3

| dimensions | type number |
| :---: | ---: |
| $(\varnothing 9.8 \pm 0.3) \times(200 \pm 10)$ | 431102052351 |
| $\times(155-4)$ | 431102052341 |

PLATES ${ }^{1}$

Grade 4B1

| dimensions | type number |
| :---: | :---: |
| $(19-1) \times(3.8-0.3) \times(150-6)$ | 431102052411 |
| $\times(125-5)$ | 431102052401 |
| $\times(100-4)$ | 431102052391 |
| $\times(75-3)$ | 431102052381 |
| $(13.4-0.8) \times(4.15-0.3) \times(120-2)$ | 312210492141 |
| $\times(94-1)$ | 312210492121 |
| $\times(62-1)$ | 312210492151 |

[^53]
RODS AND TUBES FOR SMALL COILS (E.G. IF TRANSFORMERS)

Ferroxcube rods and tubes are used as cores in RF and HF inductances with an open magnetic circuit such as in IF transformers.

RODS ${ }^{1}$

| diam. (mm) | length (mm) | grade | type number |
| :---: | :---: | :---: | :---: |
| 0.95-0.15 | $10-2.5$ | 3B | 56680 21/3B |
| 1.25-0.04 | 6.2-0.4 | 3B | 432202032081 |
| 1.65-0.05 | 9.2-0.4 | 3B | 312210491071 |
| | 9.2-0.4 | 4B | 312210491061 |
| | 11.5-0.4 | 3B | 432202032101 |
| | 11.5-0.4 | 4E | 432202032111 |
| | 12.2-0.4 | 3B | 56680 36/3B |
| | 12.2-0.4 | 4B | 312210491111 |
| | 19.2-0.4 | 3B | 312210491231 |
| | 25.2-0.4 | 3B | 312210491171 |
| | 25.2-0.4 | 4B | 312210491181 |
| | 28.2-0.4 | 3B | 312210491091 |
| | 28.2-0.4 | 4B | 432202032091 |
| 1.7-0.15 | 15.2-0.4 | 4D | 432202032171 |
| 1.7-0.1 | 28.2-0.4 | 4C | 432202032121 |
| | 28.2-0.4 | 4D | 432202032131 |
| | 28.2-0.4 | 4E | 432202032141 |
| 1.7-0.15 | 30.5-1 | 3 B | 312210491201 |
| 1.75-0.2 | 10.2-0.4 | 3 B | 312210491131 |
| | 18.5-1 | 3B | 312210491141 |
| | 18.5-1 | 4 B | 312210491151 |
| | 18.7-0.4 | 3B | 312210491141 |
| $4-0.5$ | 63-1 | 3 C | 56680 63/3C1 |
| $6-0.075$ | 46.2-0.4 | 3 C | 312210491311 |
| 6.65-0.3 | 40.4-0.8 | 3B | 432202032161 |

[^54]
FERROXCUBE 3 \& 4

RODS AND TUBES FOR SMALL COILS (e.g. IF transformers)

Ferroxcube rods and tubes are used as cores in RF and HF inductances with an open magnetic circuit such as in IF transformers.

TUBES ${ }^{1}$

| outer diam. (mm) | inner diam. (mm) | length (mm) | grade | type number |
| :---: | :---: | :---: | :---: | :---: |
| $2.8-0.03$ | $1.2+0.1$ | 8.2-0.4 | 3B | 432202034341 |
| $3.7-0.4$ | $1.2+0.2$ | $3.5-0.5$ | 3B | 432202034401 |
| | | | 4B | 432202034421 |
| | | 6.5-0.5 | 3B | 402210180011 |
| $3.7-0.3$ | $1.7+0.2$ | 13.7-0.4 | 4E | 432202034331 |
| 4.15-0.05 | $2+0.2$ | 7.2-0.4 | 4A | 432202034441 |
| | | 12.2-0.4 | 4B | 432202034451 |
| | | | 4C | 432202034461 |
| | | | 4D | 432202034471 |
| | | 15.2-0.4 | 4B | 432202034381 |
| | | | 4 C | 432202034371 |
| | | 21.2-0.4 | 4A | 432202034391 |
| | | | 4B | 432202034481 |
| $4.3-0.2$ | $2+0.2$ | 7.2-0.4 | 3B | 312210492901 |
| | | 12.5-1 | 3B | 432202034491 |
| | | 15.2-0.2 | 4D | 432202036761 |
| | | 15.4-0.8 | 3B | 432202036751 |
| | | 18.5-1 | 3B | 432202036771 |
| | | 25.5-1 | 3B | 432202036781 |
| | | | 4B | 312210490811 |
| | | | 4C | 56060 75/4C |
| | | | 4D | 56060 75/4D |
| | | | 4E | 56060 75/4E |
| | | 30.2-0.4 | 3B | 432202036791 |
| | | 40.5-1 | 3B | 312210490801 |
| | | 55.5-1 | 3B | 432202036801 |
| 4.95-0.1 | $1.3+0.2$ | 40.5-1 | 3 C 3 | 312210493111 |
| 5.3-0.2 | $3+0.2$ | 22.4-0.8 | 3B | 432202036811 |
| 6.2-0.4 | $2.85+0.3$ | 30.2-0.4 | 4 C | 432202036821 |
| 6.4-0.4 | $3+0.2$ | 14.3-0.6 | 4D | K5 00085 |
| $8 \quad-0.4$ | $4.2+0.6$ | 51.4-2.8 | 3B | 432202034311 |
| | | | 4B | 432202034321 |

1 Preferred types

FERROXCUBE 3 \& 4

SCREW CORES AND CUP CORES FOR SMALL COILS (e.g. IF transformers)

SCREW CORES ${ }^{1}$

The standard cores are available in ferroxcube 3D3 with an initial permeability of $750 \pm 20 \%$.

| screw thread | 1
 $(\mathrm{~mm})$ | d
 $(\mathrm{~mm})$ | a
 $(\mathrm{~mm})$ | b
 $(\mathrm{~mm})$ | |
| :--- | ---: | ---: | :--- | :--- | :--- |
| M4 $\times 0.50$ | 12 ± 0.3 | $3.65+0.05$ | 1.6 ± 0.1 | 0.7 ± 0.1 | 431202032041 |
| M4 $\times 0.50$ | 7 ± 0.2 | $3.65+0.05$ | 1.6 ± 0.1 | 0.7 ± 0.1 | 431202032141 |
| M5 $\times 0.75$ | 12 ± 0.3 | $4.55+0.05$ | 2.15 ± 0.15 | 0.8 ± 0.1 | 431202032051 |
| M5 $\times 1$ | 20 ± 0.3 | $5.0-0.1$ | 2.35 ± 0.15 | 1.1 ± 0.1 | 431202032131 |
| M6 $\times 0.5 *$ | 12 ± 0.2 | $5.9-0.04$ | $2.45+0.3$ | 1.2 ± 0.2 | 431202032011 |
| M6 $\times 0.75$ | 25 ± 0.5 | $5.55+0.05$ | 2.65 ± 0.15 | 1.1 ± 0.1 | 431202032071 |
| M6 $\times 0.75$ | 13 ± 0.3 | $5.55+0.05$ | 2.65 ± 0.5 | 1.1 ± 0.1 | 431202032061 |
| M6 $\times 1$ | 25 ± 0.5 | 5.5 ± 0.02 | 2.75 ± 0.25 | 1.3 ± 0.1 | 431202032031 |
| M6 $\times 1$ | 12 ± 0.3 | 5.5 ± 0.02 | 2.75 ± 0.25 | 1.3 ± 0.1 | 431202032021 |
| M7 $\times 1$ | 18 ± 0.5 | $6.45+0.05$ | 3.15 ± 0.15 | 1.3 ± 0.1 | 431202032091 |
| M7 $\times 1$ | 12 ± 0.3 | 6.45 ± 0.05 | 3.15 ± 0.15 | 1.3 ± 0.1 | 431202032081 |
| M8 $\times 0.75$ | 16 ± 0.5 | $7.55+0.05$ | 3.65 ± 0.15 | 1.3 ± 0.1 | 431202032101 |
| M8 $\times 1.25$ | 25 ± 0.5 | $7.35+0.05$ | 3.65 ± 0.15 | 1.3 ± 0.1 | 431202032121 |
| M8 $\times 1.25$ | 16 ± 0.5 | 7.35 ± 0.05 | 3.65 ± 0.15 | 1.3 ± 0.1 | 431202032111 |

* Grade 3B

CUP CORES ${ }^{1}$

Type number 132210492221, Grade 3B1

[^55]

Type number 432202020954, Grade 3B1

FERROXCUBE $3 \& 4$

PIECE PARTS AND MOUNTING PARTS FOR SMALL IF-COILS

LILLIPUT COILS (complete IF-coils for 452 kc :s : AP 1040-AP 1045 etc.)

The complete range of piece parts comprises:

Screw core (ferroxcube)

| max. frequency (Mc/s) | grade | type number ${ }^{1}$ |
| :---: | :---: | ---: |
| 0.6 | $3 B 1$ | 312210493011 |
| 2 | $4 \mathrm{B1}$ | 93021 |
| 12 | 4D1 | 93041 |
| 40 | powder
 iron | K4 725 10 |
| | | |

A version with a trimming grip on both sides is also available.

Frame (lacquered)

| max. frequency (Mc's) | type number |
| :---: | :---: |
| 0.6 | AP 3014003B1 |
| 2 | AP 3014 01/4B1 |
| 12 | AP 301402 4D1 |
| ratio detector | AP 3014 03 4D1 |

Coupling rod (3B1) Type number 312210491131
Coupling disc Type number AP 3018

For coupling between primary and secondary windings, to be inserted in disc AP 3018.

FERROXCUBE 3 \& 4

PIECE PARTS AND MOUNTING PARTS FOR SMALL IF-COILS

LILLIPUT COILS

For two coils

Type number AP 301503

Coil formers (polyethylene)

7240821

For one coil

Mechanical shielding - type number AP 3015/00 to be used (polystyrene) when screening is not required; the Q-factor is not affected.

Mechanical shielding - type number AP 3015/01 (copper)
(symmetric hole) type number AP 3015/02
(asymmetric hole)

Block

Type number AP 3019 (for ratio detector only)

Spacer plate

Type number AP 3017

| | version | type number |
| :--- | :--- | :--- |
| symmetric;
 for use without
 ferroxcube frame | 4 pins | AP 301600 |
| asymmetric; | AP 3016:01 | |
| for use with | | |
| ferroxcube frame | 4 pins | AP 3016,02 |

| | version | type number |
| :--- | ---: | ---: |
| asymmetric;
 for use with
 ferroxcube frame | 2 flanges | AP 3016,05 |
| base with | 4 pins | AP 3016/04 |

FERROXCUBE 3 \& 4

YOKE RINGS FOR USE IN DEFLECTION COILS FOR 110° PICTURE TUBES

European technique
Type number 312210492181 (preferred type)

American technique
Type number 432202035011

DAMPING BEADS AND WIDE-BAND CHOKES (for anti-interference applications)

Beads and wide-band chokes are available in ferroxcube grades 3B1 and 4B1.
The chokes are supplied with six axial holes through which $1.5,2.5$ or 2×1.5 turns of tinned copper wire are threaded.
The table gives the types of chokes that are currently available.
Detailed information can be given on request.

481 groen.

| number of turns | $Z_{\text {max }}$ (kS) | $\begin{gathered} f\left(\text { at } Z_{\max }\right) \\ (\mathrm{Mc} / \mathrm{s}) \end{gathered}$ | decrease of impedance | | grade | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | in the frequency range
 (Mc / s) | $d B$ | | |
| 1.5 | $0.35 \pm 20 \%$ | 120 | 10-300 | ≤ 7 | 3B1 | 431202036631 |
| 1.5 | $0.45 \pm 20 \%$ | 250 | 80-300 | ≤ 3 | 4B1 | 431202036691 |
| 2.5 | $0.75 \pm 20 \%$ | 50 | 10-220, 30-100 | $\leq 7, \leq 3$ | 3B1 | 431202036641 |
| 2.5 | $0.85 \pm 20 \%$ | 180 | 50-300, 80-220 | $\leq 6, \leq 3$ | 4B1 | 431202036701 |
| 2×1.5 | $0.90 \pm 20 \%$ | 50 | 10-220, 30-100 | $\leq 7, \leq 3$ | 3B1 | 431202036651 |
| 2×1.5 | $1.00 \pm 20 \%$ | 110 | 50-300, 80-220 | $\leq 7, \leq 3$ | 4B1 | 431202036711 |

Beads without wire ${ }^{1}$

Fig. 2

| L
 $(\mathrm{~mm})$ | outer \varnothing or b
 $(\mathrm{~mm})$ | inner \varnothing
 (mm) | s
 $(\mathrm{~mm})$ | Grade | fig. | type number |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 10 ± 0.5 | 6 ± 0.3 | $0.7+0.2$ | - | $3 B 1$ | 2 | 431202031501 |
| 14 ± 0.4 | 14 ± 0.5 | $3.5+0.5$ | $8.5-0.5$ | 4 B1 | 1 | 431202031521 |
| 10 ± 0.5 | 6 ± 0.3 | $0.7+0.2$ | - | $4 B 1$ | 2 | 431202031551 |
| 7.5 ± 0.5 | 6 ± 0.3 | $0.7+0.2$ | - | $3 B 1$ | 2 | VK 21118 |
| 8 ± 0.3 | 14 ± 0.5 | $3.5+0.5$ | $8.5-0.5$ | $4 B 1$ | 1 | 431202031571 |

[^56]
FERROXCUEE 3 \& 4

U-CORES FOR LINE-OUTPUT TRANSFORMERS

Fig. 1

Fig. 2

Available types

All types of core are available in ferroxcube grades 3C4 and 3C6. The difference in splay between two U-cores taken at random from one packing will never exceed half the total tolerance on dimension B_{1}.

| dimensions (mm) | | | | | | grade | type number
 Fig. 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B_{1} | B_{2} | D_{1} | G | H | K | | |
| 49.8 ± 0.8 | 26.9 | 15.5 ± 0.4 | 4.8 ± 0.2 | 28.4 ± 0.2 | $15.5+1$ | $\begin{aligned} & 3 C 4 \\ & 3 C 6 \end{aligned}$ | 431202033201^{1} 33301^{1} |
| | | | | | | | Fig. 2 |
| 56.7 ± 0.75 | 36.1 | 13.8 ± 0.2 | 3.6 ± 0.2 | 29.5 ± 0.2 | $17.6+1$ | 3 C 4 | 33221 |
| 60.35 ± 0.9 | 37.05 | 15.9 ± 0.4 | 4.8 ± 0.2 | 28.75 ± 0.2 | $15.55+1$ | 3C6 | 33321 |
| | | | | | | 3C6 | 33311 |
| 60.35 ± 0.9 | 37.75 | 15.9 ± 0.4 | 4.8 ± 0.2 | 31.8 ± 0.2 | $18.55+1$ | $\begin{aligned} & 3 C 4 \\ & 3 C 6 \end{aligned}$ | $\begin{aligned} & 33231 \\ & 33331 \end{aligned}$ |

[^57]
FERROXCUBE 3 \& 4

U-CORES FOR LINE-OUTPUT TRANSFORMERS

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 6.

FERROXCUBE 3 \& 4

U-CORES FOR LINE-OUTPUT TRANSFORMERS

MATERIAL 3C6

| $\begin{gathered} B_{1} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} B_{2} \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} H \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} K \\ (m m) \end{gathered}$ | $\begin{gathered} D \\ (m m) \end{gathered}$ | fig. | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40.7 ± 1.3 | $24.4+1.2$ | 33 ± 0.2 | $23.1+0.9$ | 11.4-0.5 | 3 | 312210490481 |
| 39.6 ± 0.4 | | 9.5 ± 0.2 | | $11.4-0.5$ | 4 | 312210490471 |
| 49.6 ± 0.8 | 27 ± 1 | 44.2 ± 0.2 | >31 | 15.6 ± 0.4 | 3 | 431202033381 |
| 50 ± 0.8 | | 12.6 ± 0.2 | | 15.6 ± 0.4 | 4 | 431202033391 |
| $58+1.3$ | 28 ± 1 | 44.6 ± 0.5 | 31.5 ± 0.5 | 15 ± 0.4 | 5 | 431202033341 |
| $58+1.3$ | 28 ± 1 | 34.6 ± 0.5 | 21.5 ± 0.5 | 15 ± 0.4 | 5 | 431202033351 |
| 59.4 ± 0.8 | | 13.5 ± 0.2 | | 15 ± 0.4 | 6 | 431202033361 |
| 72 ± 1 | 44 ± 1.4 | 33.1 ± 0.15 | 19 ± 0.4 | 14.1 ± 0.3 | 1^{11} | 431202033001 |
| 93 ± 1.8 | $36.2+1.6$ | 52 ± 0.5 | $24 \quad 0.45$ | 30 ± 0.6 | 1 | 431202033102 |
| 93 ± 1.8 | | 27.5 ± 0.5 | \pm | 30 ± 0.6 | 2 | 431202033112 |
| 93 ± 1.8 | $36.2+1.6$ | 76 ± 0.5 | 48 ± 0.9 | 30 ± 0.6 | 1 | 431202033092 |
| 93 ± 1.8 | $36.2+1.6$ | 76 ± 0.5 | 48 ± 0.9 | 16 ± 0.5 | 1 | 431202033072 |
| 93 ± 1.8 | | 27.5 ± 0.5 | | 16 ± 0.5 | 2 | 431202033082 |
| 101.6 ± 2 | >47 | 57.1 ± 0.4 | 31.7 ± 0.75 | 25.4 ± 0.8 | 1 | 431202033122 |

[^58]
FERROXCUBE 3 \& 4

PIECE PARTS FOR ERASING HEADS (material grades 3C1 and 3C2)

For good erasing of magnetic tape at a low noise level, a frequency is required that is several times higher than the maximum frequency to be recorded. That is why, for use in erasing heads a core material with low eddy current losses is recommended. Low eddy current losses imply low heat dissipation, and consequently less power for the erasing procedure.
Ferroxcube cores possess this property in a much higher degree than laminated metal cores, so that they are plainly indicated for this application.
The tables below contain data of ferroxcube cores in the material grades $3 C 1$ and 3C2.

Properties

Low eddy current losses at frequencies up to $500 \mathrm{kc} / \mathrm{s}$. The initial permeability is approximately 900.
The saturation flux at $23^{\circ} \mathrm{C}$ is
of ferroxcube 3C1 approx. 3300 gauss,
of ferroxcube 3C2 approx. 3800 gauss.

Fig. 1

Fig. 2

Survey of cores

Ferroxcube grade 3C1, shape according to Fig. 1.

| dimensions (mm) | | | | | | | | | | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | D | d | E | F | G | H | R | |
| 4.7-0.4 | 1.7-0.4 | 11 ± 0.2 | 1.4 ± 0.2 | 0 | 0.5 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | 5 ± 0.2 | 5690727/3C1 |
| 4.7-0.4 | 3.6-0.2 | 11 ± 0.2 | 1.4 ± 0.2 | 0 | 0.5 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | 5 ± 0.2 | 5690733/3C1 |
| 4.7-0.4 | $7.1-0.2$ | 11 ± 0.2 | 1.4 ± 0.2 | 0 | 0.5 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | $5 \div 0.2$ | 569077313C1 |
| 4.7-0.4 | 1.2-0.4 | 11 ± 0.2 | 1.4 ± 0.2 | 0 | 0.5 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | 5 ± 0.2 | 5690780/3C1 |
| $4.7-0.4$ | 3.5-0.3 | 11 ± 0.2 | 1.4 ± 0.2 | 0 | 0.55 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | 5 ± 0.2 | 569079713C1 |
| 4.7-0.4 | 2.8-0.2 | 11 ± 0.2 | 1.4 ± 0.2 | $0+0.2$ | 0.5 ± 0.1 | $4.8+0.4$ | 3.2-0.4 | $2.4+0.2$ | 5 ± 0.2 | K550090 |
| $4.7-0.3$ | 1.4-0.2 | 11 ± 0.2 | 1.4 ± 0.2 | $0+0.2$ | 0.5 ± 0.1 | $4.8+0.4$ | $3.2-0.4$ | $2.4+0.2$ | 5 ± 0.2 | K550015 |
| 3.1-0.3 | 1.6-0.2 | 9.2 ± 0.2 | 1.4 ± 0.1 | $0+0.1$ | 0.5 ± 0.1 | $3.8+0.4$ | 3.2-0.4 | $1.4+0.2$ | 2 ± 0.2 | K550035 |

Ferroxcube grade 3C2, shape according to Fig. 2.

| dimensions (mm) | | | | | | | | | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | B | C | d | F | G | H | R_{1} | R_{2} | |
| 5.8-0.4 | 3.6-0.2 | 18 ± 0.4 | 0.1 ± 0.65 | $9.4+0.4$ | 4.5-0.4 | $3+0.2$ | 11 ± 0.2 | 7 ± 0.2 | K550000 |
| 5.8-0.4 | $1.6-0.2$ | 18 ± 0.4 | 0.1 ± 0.05 | $9.4+0.4$ | 4.5-0.4 | $3+0.2$ | 11 ± 0.2 | 7 ± 0.2 | K550025 |
| 5.8-0.4 | 2.6-0.2 | 18 ± 0.4 | 0.1 ± 0.05 | $9.4+0.4$ | 4.5-0.4 | $3+0.2$ | 11 ± 0.2 | 7 ± 0.2 | K550045 |

Introduction

Ever since ferroxcube potcores were first introduced some fifteen years ago, they have proved to be among the best cores for inductors and transformers and have been used in ever-increasing quantities. Originally developed for carrier telephone equipment, potcores are nowadays also used successfully in loading coils, tuned circuits, chokes, and many other applications where highly reliable inductors are required.

One of the great advantages of ferroxcube potcores over the conventional powderiron or spiral cores is that it is possible to adapt their effective permeability to the specific requirements of the inductor for a certain application. In this way, high quality factors and high stability of inductance can be obtained with cores of small volume. This also results in a small volume of the whole equipment, the more so as no additional external shields are required. Metal parts in the vicinity of the coil do not cause losses, since the stray magnetic field around the potcores is extremely small.

A great variety of potcore types is available to suit the widest diversity of requirements in a frequency range extending from audio frequencies to approximately $20 \mathrm{Mc} / \mathrm{s}$.

Contrary to the custom of the early days of ferroxcube, when a type of core was designed for a specific application, to-day ranges of internationally standardized cores are available (see the tables), which can be used in the majority of applications. In this way, the creation of a great variety of core shapes is avoided, and all the advantages of largescale production, constant quality level and reasonable prices are fully exploited.

The entire problem of the construction of a coil or a transformer can be reduced to the following points. Around a core of magnetic material, a number of windings of conducting wire must be arranged in some way or other. This arrangement must be such that winding and core are not only kept together in a stable way, but also that the coil can be easily inserted into a circuit. A further requirement is that the assembly should preferably be suitable for conventionally wired circuits as well as for mounting on printed-wiring boards. Finally, coils for tuned circuits should be provided with means of adjusting their inductance, so that the circuit of which they form part can be tuned inductively, and bulky capacitive trimmers avoided.

Apart from the complete range of ferroxcube potcores, a comprehensive survey of coil formers, mounting parts and adjusting devices is given that eminently match the range of potcores.

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES

Electrical properties

On the following pages the values of relative effective permeability, μ_{e}, are given. This characteristic is the most important factor to be considered when designing a coil with a ferromagnetic core. The relative effective permeability is defined as

$$
\mu_{e}=\frac{\sum \frac{1}{\mathbf{A}}}{\sum \frac{1}{\mu_{i} \mathbf{A}}}
$$

where $\mu_{i}=$ the relative initial permeability of the material used;
$\mathrm{I}=$ the length of the lines of force of the part of the magnetic circuit considered, in cm ;
$A=$ the cross-section through the core, perpendicular to the direction of the lines of force, in cm^{2}.

For a certain required inductance L, the necessary number of turns N is calculated either from

$$
\mathrm{N}=a \sqrt{ } \mathrm{~L}
$$

or from

$$
\mathrm{N}^{2}=\frac{\mathrm{L}}{\mathrm{~A}_{L}} .
$$

in which:
$a=$ the turns factor, that is, the number of turns for 1 mH when the coil former is completely filled;
$\mathrm{A}_{L}=$ the inductance factor, that is, the inductance in nH per turn, also calculated for a completely filled coil former.

If no adjustment is carried out by introducing an air gap, the limits between which the inductance of the assembled coil may vary are determined by the guaranteed properties of the core material and the mechanical tolerances of the core.
The values of μ_{e}, α or A_{L} mentioned are to be used for the potcores without the adjusting mechanism.
The most important electrical properties of a coil are the total losses at low induction, the hysteresis losses and the stability of
 the inductance with time and temperature. They are determined to a great extent by the proper choice of the effective permeability μ_{e}. It should always be kept in mind, however, that in the case of the maximum quality factor, about one half of the total losses is still made up of losses in the copper and insulating material. When designing coils, it is, therefore, most important to select the right kind of winding wire and insulating material. For low-frequency coils the winding space should be used to the full extent, and for high-frequency coils care should be taken that the stray capacitance does not become excessive.
It is impossible to give here hard and fast rules for the optimum design of potcored coils. More detailed information will be gladly supplied on request.

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES

Grades of material

Potcores can be obtained in different grades of ferroxcube. Each grade has specific advantages in a certain frequency range and for certain applications. For example, grade 3 H 1 has been developed to match the temperature coefficient of polystyrene capacitors; grade 3 B 7 is meant for coils in combination with mica capacitors.

The table below indicates the purpose for which the different materials are most suitable. A survey of material properties that gives more detailed information can be found on page G7.
Not all potcore sizes are available in each of the material grades mentioned in the table. Since the choice of a certain core size depends on, amongst others, the frequency of the application concerned, a selection has been made for the most frequent requirements. Subsequent tables contain the grades of material in which the various types of core are normally available.

| main application | approximate frequency range | ferroxcube grade |
| :---: | :---: | :---: |
| filter coils | $\begin{aligned} & \text { from } 0.1 \text { to } 200 \mathrm{kc} / \mathrm{s} \\ & 200 \mathrm{kc} / \mathrm{s} \text { to } 2 \mathrm{Mc} / \mathrm{s} \\ & 2 \mathrm{Mc} / \mathrm{s} \text { to } 20 \mathrm{Mc} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 3 B 7,3 H 1 \\ & 3 D 3 \\ & 4 C 4 \end{aligned}$ |
| loading coils, transformers, chokes | up to $60 \mathrm{kc} / \mathrm{s}$ $200 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{Mc} / \mathrm{s}$ | $\begin{aligned} & 3 \mathrm{H} 1 \\ & 3 \mathrm{H} 1 \end{aligned}$ |

FERROXCUBE $3 \& 4$

POTCORES OF THE P-SERIES

Available types

Potcores are generally supplied in three versions:

(a) potcore halves without air gap

These cores are of interest to large-quantity consumers who are doing their own adjustments, and who in this way are offered all the advantages of simple stock keeping and a free choice of the effective permeability.

Preferred types of potcore halves (P-series)

| material | $3 \mathrm{H1}$ | $3 B 7$ | 3 D 3 | $4 C 4$ |
| :---: | :---: | :---: | :---: | :---: |
| P 11/7 | K5 35216 | K5 35215 | K5 35217 | K5 35219 |
| P 148 | K5 35182 | K5 35181 | K5 35180 | K5 35184 |
| P 1811 | K5 35152 | K5 35153 | K5 35151 | K5 35154 |
| P 22.13 | K5 35201 | K5 35200 | K5 35202 | K5 35203 |
| P 26.16 | K5 35157 | K5 35158 | K5 35156 | K5 35159 |
| P 3019 | K5 35205 | K5 35206 | K5 35207 | K5 35209 |
| P 3622 | K5 35161 | K5 35162 | K5 35163 | K5 35164 |
| P 4229 | K5 35222 | K5 35221 | - | - |

Potcore halves are only supplied without an air gap.
Two parts are required for one complete core.
(b) pre-adjusted potcores with μ_{μ}-values following the E6 progression

The advantage of this range of pre-adjusted potcores is that for each potcore size the same effective permeability may be chosen. Narrow limits of inductance after assembly can be realised.
(c) pre-adjusted potcores with A_{L}-values following the R5 and R10 progression

Like the pre-adjusted types mentioned under (b), these potcores have narrow inductance limits.

Accessories and mounting parts

Coil formers

The type numbers of the standard (I.E.C) coil formers are given with their nominal dimensions. The rigid insulating material can amply withstand the stresses that occur during winding. It has an adequate moisture resistance, and
 will endure the conventional impregnating temperatures.

Adjustors

The inductance of a pre-adjusted potcore can be increased by inserting an adjustor. In practice, an adjustment range of 10% is generally sufficient to cope with the tolerances of capacitors and inductors, and with the parasitic capacitances and inductances that occur when components are incorporated in a circuit.
On pages G34-G38 for each type of potcore the corresponding type of adjustor is given which will increase the published μ_{e}-value by a minimum of 8%, and a maximum of 14% approximately.
When optimum stability is of prime importance, the type of adjustor that matches a certain potcore should be chosen. If it is desired to widen the adjustment range, however, an adjustor indicated for a potcore with a high μ_{e}-value may be used in a potcore with a low μ_{e}-value.

Mounting parts

Potcored coils can be mounted on conventional panels (see below), as well as on printed-wiring boards; the location of the soldering tags being matched to the 0.1 in . as well as to the 2.50 mm grid. The insulating material of the tag plate can fully withstand the temperatures occurring during dip-soldering.
After placing the spring in the container, the core is brought under the correct pressure by pressing the tag plate down to the rim of the container. It will be held in place after the three ears have been folded over. For conventional panel mounting, a fixing bush and nut are separately available. Type P 11/7 does not possess this mounting facility.
Further information on the design of simple tools for potcore assembly will be gladly supplied on request.

POTCORES OF THE P-SERIES

Mounting parts and coil formers

| accessories | type number | |
| :--- | ---: | :--- |
| coil former | | |
| $\quad 1$ section | P5 | 055 |
| container | B1 | 410 |
| con | B1 | 480 |
| spring | | 31 |
| tag plate | 4322 | 021 |

For mounting on printed-wiring boards only

For mounting on conventional panels as well as on printed-wiring boards
${ }^{1}$ For panel mounting use fixing bush B1 39185 and nut B1 43653.
${ }^{2}$ For panel mounting the container 4322021 30600 has to be used.

Type P 148

| accessories ${ }^{1,2}$ | type number |
| :--- | :--- |
| coil former | |
| $\quad 1$ section | P5 05572 |
| $\quad 2$ sections | P5 05573 |
| container | B1 41047 |
| spring | B1 48021 |
| tag plate | P4 05725 |

For mounting on convencional panels as well as on printed-wiring boards

FERROXCUBE $3 \& 4$

POTCORES OF THE P-SERIES

Mounting parts and coil formers

| accessories $^{1}$ | type number | |
| :--- | :--- | :--- |
| coil former | | |
| 1 section | P5 05581 | |
| 2 sections | P5 05582 | |
| sections | P5 05590 | |
| container | B1 41050 | |
| spring | B1 48022 | |
| tag plate | P4 05728 | |

| accessories $^{1}$ | type number |
| :--- | :--- |
| coil former | |
| 1 section | P5 05586 |
| 2 sections | P5 05587 |
| sections | P5 05592 |
| container | B1 41052 |
| spring | B1 48024 |
| tag plate | P4 05730 |

Type P 42/29

| accessories $^{1}$ | type number |
| :--- | :--- |
| coil former | |
| 1 section
 2 sections | P5 05560 |
| | P5 05561 |
| container | B1 41053 |
| spring | B1 48033 |
| tag plate | P4 05747 |

[^59]
FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES

Survey of potcore and coil former dimensions

POTCORES

The main dimensions of the potcores are in conformity with the following standardization specifications.
IEC publication 133
CCTU 06-02 (France)
DIN 41293 (Germany)

| core type | nominal dimensions (mm) | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | d_{1} | d_{2} | d_{3} | d_{4} | h_{1} | h_{2} |
| | 19.1 | 9.20 | 4.60 | 2.05 | 6.50 | 4.55 |
| P14.8 | 14.0 | 11.8 | 5.90 | 3.10 | 8.40 | 5.80 |
| P18.11 | 17.9 | 15.1 | 7.45 | 3.10 | 10.6 | 7.40 |
| P22.13 | 21.5 | 18.2 | 9.25 | 4.50 | 13.4 | 9.40 |
| P26 16 | 25.5 | 21.6 | 11.3 | 5.50 | 16.0 | 11.2 |
| P3019 | 30.0 | 25.4 | 13.3 | 5.50 | 18.9 | 13.2 |
| P36 22 | 35.5 | 30.4 | 15.8 | 5.50 | 21.9 | 14.8 |
| P42 29 | 42.4 | 36.3 | 17.4 | 5.50 | 29.4 | 20.5 |

COIL FORMERS

The dimensions of the coil formers are in conformity with the following standardization specifications:
IEC publication 133
CCTU 06-02 (France)

D.I.N. 41294 (Germany)

| core type | nominal dimensions (mm) | | | | | | | | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | d_{1} | d_{2} | d_{3} | h_{1} | h_{2} | h_{3} | h_{4} | a | |
| P11/7 | 8.9 | 5.7 | 4.8 | 4.2 | 3.5 | - | - | 2.2 | |
| P14/8 | 11.5 | 7.1 | 6.1 | 5.4 | 4.5 | 2.08 | - | 2.7 | |
| P18/11 | 14.8 | 8.7 | 7.7 | 7.0 | 6.1 | 2.88 | 1.80 | 3.0 | |
| P22/13 | 17.8 | 10.7 | 9.6 | 9.0 | 7.9 | 3.72 | 2.35 | 3.2 | |
| P26/16 | 20.9 | 12.8 | 11.7 | 10.8 | 9.7 | 4.62 | 2.93 | 3.2 | |
| P30/19 | 24.7 | 15.0 | 13.7 | 12.8 | 11.5 | 5.42 | 3.40 | 3.7 | |
| P36/22 | 29.6 | 17.9 | 16.5 | 14.4 | 12.9 | 6.07 | 3.80 | 4.2 | |
| P42/29 | 35.4 | 19.6 | 18.0 | 19.8 | 17.8 | - | - | - | P5 05560 |
| P42/29 | 35.4 | 19.6 | 18.0 | 19.0 | - | 8.0 | - | - | P5 05561 |

POTCORES OF THE P-SERIES

Pre-adjusted type P11/7 with effective permeability (μ_{e}) following the E6 progression ${ }^{1}$)

| application | grade of ferroxcube | effective permeability (μ_{e}) | number of turns for 1 mH
 (a) | tolerance on inductance (\%) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| coils in tuned circuits and equalisers | 4 C 4 | 15 | 225 | ± 1 | K3 00317 |
| | 4 C 4 | 22 | 186 | ± 1 | 318 |
| | 4 C 4 | 33 | 152 | ± 1 | 319 |
| | 3D3 | 33 | 152 | ± 1 | 311 |
| | 3D3 | 47 | 127 | ± 1 | 312 |
| | 3D3 | 68 | 105.8 | ± 1 | 313 |
| | 3B7 | 68 | 105.8 | ± 1 | 291 |
| | 3 H 1 | 68 | 105.8 | ± 1 | 301 |
| | 3B7 | 100 | 87.2 | ± 1.5 | 292 |
| | 3 H 1 | 100 | 87.2 | ± 1.5 | 302 |
| | $3 \mathrm{B7}$ | 150 | 71.2 | ± 2 | 293 |
| | 3 H 1 | 150 | 71.2 | ± 2 | 303 |
| pulse
 transformers | 3D3 | 660 | 33.9 | ± 25 | 310 |
| | $3 \mathrm{B7}$ | 1300 | 24.2 | ± 25 | 290 |
| | 3 H 1 | 1300 | 24.2 | ± 25 | 300 |

Pre-adjusted potcore type $\mathbf{P 1 1} 7 \mathbf{7}$ with A_{L}-values following the R5 (R10) progression

| application | grade of ferroxcube | A_{L} | corresponding μ_{e} | tolerance on inductance (\%) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 4C4 | 25 | 19.0 | ± 1 | K3 00638 |
| | $4 \mathrm{C4}$ | 40 | 30.5 | ± 1 | 639 |
| | 3D3 | 40 | 30.5 | ± 1 | 631 |
| | 3D3 | 63 | 48 | ± 1 | 632 |
| coils in tuned | 3D3 | 100 | 76 | ± 1 | 633 |
| circuits and | 3B7 | 100 | 76 | ± 1 | 621 |
| equalisers | 3 H 1 | 100 | 76 | ± 1 | 611 |
| | 3B7 | 160 | 122 | ± 1.5 | 622 |
| | 3 H 1 | 160 | 122 | ± 1.5 | 612 |
| | 3B7 | 250 | 190 | ± 3 | 623 |
| | 3 H 1 | 250 | 190 | ± 3 | 613 |

[^60]
FERROXCUBE 3 \& 4

CONTINUOUS INDUCTANCE ADJUSTORS OF POTCORES P11/7

The tolerances on inductance of the pre-adjusted potcores (without adjustor) are given on the pages G38-G45. After inserting a coil (impregnated or not) in an electrical circuit, its inductance can be adjusted to the required value with an accuracy $<0.3^{\circ} \%$ by means of a continuous inductance adjustor. Such an adjustor increases the inductance of the coil by maximum 8 to 14%.
The adjustor is screwed in the centre hole of the potcore by means of a matching nut and is held in position by the corner edges on the top of the adjustor.
For special requirements a bigger or smaller adjustment range may be obtained by using an adjustor belonging to the next higher or lower effective permeability. The influence of these adjustors on the variability of the inductance is negligible.
The maximum permissible temperature is $110^{\circ} \mathrm{C}$.
Recommended adjustors for the pre-adjusted potcores are given below.

Adjustor

Nut for adjustor type number 432202131230

| potcore P11/7 | | material grade 3B7/3H1/3D3
 adjustor | |
| :---: | ---: | :---: | :--- |
| | μ_{e} | A_{L} | type number |
| 33 | 40 | 432202131250 | colour |
| 47 | 63 | 432202131260 | green |
| 68 | 100 | 432202131270 | red |
| 100 | 160 | 432202131540 | yellow |
| 150 | 160 | 432202131540 | brown |
| 220 | 250 | 432202131280 | brown |

CONTINUOUS INDUCTANCE ADJUSTORS OF THEP-SERIES

Fig. A

Fig. B

Fig. C

Fig. D

P14/8

| potcore | | material grade | | |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{\prime \prime} \mathrm{e}$ | A_{L} | 3B7/3H1 | 303 | $4 C 4$ |
| 15 | 25 | | | $\begin{array}{lll} \text { PS } & 056 & 03 \\ \text { PS } & 056 & 03 \end{array}$ |
| 22 | | | | P5 05603 |
| | 40 | P5 05604 | P5 05604 | P5 05658 |
| 33 | | P5 05604 | P5 05604 | P5 05659 |
| | 63 | P5 05603 | P5 05603 | PS 05658 |
| 47 | | P5 05603 | P5 05603 | |
| | 100 | P5 05658 | $\text { P5 } 05658$ | |
| 68 | | P5 05658 | P5 05658 | |
| 100 | | P5 05659 | P5 05659 | |
| | 160 | P5 05659 | $\text { P5 } 05659$ | |
| 150 | | P5 05694 | P5 05694 | |
| | 250 | P5 05694 | P5 05694 | |
| 220 | | P5 05738 | P5 05738 | |

| adjustor | | |
| :---: | :--- | :---: |
| type number | colour | fig. |
| P5 056 03 | red | A |
| P5 056 04 | green | A |
| P5 056 58 | yellow | B |
| P5 056 59 | white | B |
| P5 056 94 | brown | A |
| P5 057 38 | grey | B |

P18/11

| potcore | | material grade | | |
| :---: | :---: | :---: | :---: | :---: |
| ${ }^{\prime \prime}$ | A_{L} | $3 \mathrm{B7/3H1}$ | 303 | $4 \mathrm{C4}$ |
| 15 22 | $\begin{aligned} & 25 \\ & 40 \end{aligned}$ | | | P5 05605
 P5 05605
 P5 05606
 P5 05606 |
| | 63 | P5 05605 | PS 05605 | |
| 33 | | P5 05605 | PS 05605 | PS 05661 |
| | 100 | P5 05606 | P5 05606 | |
| 47 | | P5 05606 | P5 05606 | |
| 68 | | P5 05660 | P5 05660 | |
| | 160 | P5 05660 | PS 05660 | |
| | 250 | P5 05661 | P5 05661 | |
| 100 | | P5 05661 | P5 05661 | |
| 150 | | P5 05593 | P5 05593 | |
| | 400 | P5 05695 | P5 05695 | |
| 220 | | P5 05695 | P5 05695 | |

| adjustor | | |
| :---: | :---: | :---: |
| type number | colour | fig. |
| PS 05605 | green | C |
| P5 05606 | red | C |
| P5 05660 | yellow | D |
| P5 05661 | white | D |
| P5 05593 | brown | C |
| P5 05695 | grey | D |

CONTINUOUS INDUCTANCE ADJUSTORS OF POTCORES P22/13 and P26/16

Fig. A

Fig. B

Fig. C

Fig. D

P22/13

| potcore | | material grade | | |
| :---: | :---: | :---: | :---: | :---: |
| /'e | A_{L} | 387/3H1 | 303 | $4 C 4$ |
| 15 | 40 | | | $\begin{array}{lll} \text { P5 } & 056 & 91 \\ \text { P5 } & 056 & 91 \end{array}$ |
| 22 | | | | P5 05676 |
| | 63 | P5 05688 | P5 05688 | P5 05676 |
| 33 | | P5 05688 | P5 05688 | P5 05678 |
| | 100 | P5 05691 | P5 05691 | |
| 47 | | P5 05691 | P5 05691 | |
| 68 | | P5 05676 | P5 05676 | |
| | 160 | P5 05676 | P5 05676 | |
| | 250 | P5 05678 | P5 05678 | |
| 100 | | P5 05678 | P5 05678 | |
| 150 | | P5 05697 | P5 05697 | |
| | 400 | P5 05697 | P5 05697 | |
| 220 | | P5 05697 | P5 05697 | |
| 330 | 630 | P5 05697 432202131240 | $\begin{gathered} \text { P5 } 05697 \\ 432202131240 \end{gathered}$ | |
| 330 | | 432202131240 | 432202131240 | |

P26/16

| potcore | | material grade | | |
| :---: | :---: | :---: | :---: | :---: |
| "e | A_{L} | 3B7/3H1 | 303 | $4 C 4$ |
| 15 | | | | P5 05607 |
| 22 | | | | P5 05607 |
| | 63 | | | P5 05607 |
| 33 | | P5 05607 | P5 05607 | P5 05608 |
| | 100 | | P5 05607 | P5 05608 |
| 47 | | P5 05609 | P5 05609 | |
| | 160 | P5 05609 | P5 05609 | |
| 68 | | P5 05662 | P5 05662 | |
| | 250 | P5 05662 | P5 05662 | |
| 100 | | P5 05662 | P5 05662 | |
| 150 | | P5 05610 | P5 05610 | |
| | 400 | P5 05610 | P5 05610 | |
| 220 | | P5 05610 | P5 05610 | |
| | 630 | P5 05610 | P5 05610 | |
| 330 | | $\text { P5 } 05696$ | P5 05696 | |
| | 1000 | P5 05696 | P5 05696 | |

FERROXCUBE $3 \& 4$

CONTINUOUS INDUCTANCE ADJUSTORS OF POTCORES P30/19, P36/22 and P42/29

Fig. A

Fig. B

Fig. C

Fig. D

P 30/19

| | adjustor | | |
| :---: | :---: | :---: | :---: |
| | type number | colour | fig. |
| 100 | P5 05607 | green | A |
| 160 | P5 05609 | red | A |
| 250 | P5 05662 | white | B |
| 400 | P5 05662 | white | B |
| 630 | P5 05610 | brown | A |
| 1000 | P5 05696 | grey | B |
| 1600 | P5 05699 | blkac | C |

| $\mu_{\mathbf{e}}$
 poicore | adjustor | | | |
| :---: | :---: | :---: | :---: | :---: |
| | type number | colour | fig. | |
| 33 | P5 05607 | green | A | |
| 47 | P5 05609 | red | A | |
| 68 | P5 05662 | white | B | |
| 100 | P5 05662 | white | B | |
| 150 | P5 05610 | brown | A | |
| 220 | P5 05696 | grey | B | |
| 330 | P5 05699 | black | D | |

P 36/22

| A_{L} potcore | adjustor | | |
| :---: | :---: | :---: | :---: |
| | type number | colour | fig. |
| 160 | P5 05608 | yellow | A |
| 250 | P5 05662 | white | B |
| 400 | P5 05610 | brown | A |
| 630 | P5 05610 | brown | A |
| 1000 | P5 05696 | grey | B |
| 1600 | P5 05699 | black | D |

| ${ }^{\mu}$ potcore | adjustor | | |
| :---: | :---: | :---: | :---: |
| | type number | colour | fig. |
| 33 | P5 05608 | yellow | A |
| 47 | P5 05662 | white | B |
| 68 | P5 05662 | white | B |
| 100 | P5 05610 | brown | A |
| 150 | P5 05698 | grey | C |
| 220 | P5 05696 | grey | B |
| 330 | P5 05699 | black | D |

P 42/29

| A_{L} potcore | a djustor | | |
| :---: | :---: | :---: | :---: |
| | type number | colour | fig. |
| 250 | P5 05662 | white | B |
| 400 | P5 05610 | brown | A |
| 630 | P5 05610 | brown | A |
| 1000 | P5 05696 | grey | B |
| 1600 | P5 05699 | black | D |

| potcore | adjuitor | | |
| :---: | :---: | :---: | :---: |
| | type number | colour | fig. |
| 68 | P5 05662 | white | B |
| 100 | P5 05610 | brown | A |
| 150 | P5 05696 | grey | B |
| 220 | P5 05696 | grey | B |
| 330 | P5 05699 | black | D |

POTCORES OF THE P-SERIES-P11/7

Pre-adjusted potcores of the μ_{e} range
Preferred types

| μ_{e} | $\alpha_{m H}$ | tolerance on inductance (\%) | potcores assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | $3 \mathrm{H1}$ | 3 D 3 | $4 \mathrm{C4}$ |
| 15 | 225 | ± 1 | | | | K3 00317 |
| 22 | 186 | ± 1 | | | | 318 |
| 33 | 152 | ± 1 | | | K3 00311 | 319 |
| 47 | 127 | ± 1 | | | 312 | |
| 68 | 105.8 | ± 1 | K3 00291 | K3 00301 | 313 | |
| 100 | B7. 2 | ± 1.5 | 292 | 302 | | |
| 150 | 71.2 | ± 2 | 293 | 303 | | |
| 660 | 33.9 | ± 25 | | | 310 | |
| 1300 | 24.2 | ± 25 | 290 | 300 | | |

Number of turns for LmH is $\mathrm{N}=x_{\mathrm{v}}^{\mathrm{V}}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.

Approximate weight
1.8 grams

Mean length of lines of force

$$
\mathrm{I}_{\mathrm{e}}=1.55 \mathrm{~cm}
$$

$$
\leq \frac{1}{A}=9.56 \mathrm{~cm}^{-1}
$$

Effective volume

$$
\mathrm{V}_{\mathrm{e}}=0.251 \mathrm{~cm}^{3}
$$

Non-preferred types

| A_{L} | corresponding μ-value | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Ferroxcube grade | | | |
| | | | 387 | $3 \mathrm{H1}$ | 3D3 | $4 \mathrm{C4}$ |
| 25 | 19.0 | ± 1 | | | | K3 00638 |
| 40 | 30.5 | ± 1 | | | K3 00631 | K3 00639 |
| 63 | 48 | ± 1 | | | K3 00632 | |
| 100 | 76 | ± 1 | K3 00621 | K3 00611 | K3 00633 | |
| 160 | 122 | ± 1.5 | K3 00622 | K3 00612 | | |
| 250 | 190 | ± 3 | K3 00623 | K3 00613 | | |

A_{L} is the inductance per turn in nanohenry $\left(10^{-9} H\right), \quad L_{n H}=N^{2} A_{L}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202131230 , the rype number should be extended by the addition /01.

POTCORES OF THE P-SERIES-P14/8

Pre-adjusted potcores of the μ_{e} range.
Preferred types

| μ_{e} | $\alpha_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | $3 \mathrm{H1}$ | 3D3 | $4 \mathrm{C4}$ |
| 15 | 205 | ± 1 | | | | K3 00227 |
| 22 | 169 | ± 1 | | | | 228 |
| 33 | 137.9 | ± 1 | | K3 00215 | K3 00223 | 229 |
| 47 | 115.5 | ± 1 | | 211 | 221 | |
| 68 | 96.1 | ± 1 | K3 00202 | 212 | 222 | |
| 100 | 79.2 | ± 1.5 | 203 | 213 | | |
| 150 | 64.6 | ± 2 | 205 | 214 | | |
| 220 | 53.3 | ± 3 | 432202202080 | 216 | | |
| 680 | 30.3 | ± 25 | | | 220 | |
| 1400 | 21.2 | ± 25 | 200 | 210 | | |

Number of turns for L mH is $\mathrm{N}=\alpha \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.
Approximate weight
Mean length of lines of force

Effective volume
Non-preferred types

| A_{L} | corresponding μ-value | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | $3 B 7$ | $3 \mathrm{H1}$ | 3D3 | $4 \mathrm{C4}$ |
| 25 | 15.7 | ± 1 | | | | K3 00577 |
| 40 | 25 | ± 1 | | | K3 00571 | K3 00578 |
| 63 | 39.5 | ± 1 | | | K3 00572 | ${ }^{2}$ |
| 100 | 63 | ± 1 | K3 00561 | K3 00551 | K3 00573 | |
| 160 | 100.5 | ± 1.5 | K3 00562 | K3 00552 | | |
| 250 | 157 | ± 2 | K3 00463 | K3 00553 | | |
| 315 | 198 | ± 2 | | K3 00554 | | |

A_{L} is the inductance per turn in nanohenry $\left(10^{-9} \mathrm{H}\right), \quad \mathrm{L}_{\mathrm{nH}}=\mathrm{N}^{2} \mathrm{~A}_{\mathrm{L}}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130140 , the type number should be extended by the ad dition 101.
${ }^{2}$ type number 432202203630

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES-P18/11

Pre-adjusted potcores of the μ_{e} range

Preferred types

| μ_{e} | $\alpha_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | 3 H 1 | 3D3 | $4 \mathrm{C4}$ |
| 15 | 178 | ± 1 | | | | K3 00257 |
| 22 | 147 | ± 1 | | | | 258 |
| 33 | 120.0 | ± 1 | K3 00236 | K3 00246 | K3 00251 | 259 |
| 47 | 100.5 | ± 1 | 231 | 241 | 252 | |
| 68 | 83.6 | ± 1 | 232 | 242 | 253 | |
| 100 | 68.9 | ± 1.5 | 233 | 243 | | |
| 150 | 56.3 | ± 2 | 234 | 244 | | |
| 220 | 46.5 | ± 3 | 235 | 245 | | |
| 705 | 25.9 | ± 25 | | | 250 | |
| 1750 | 16.5 | ± 25 | 230 | 240 | | |

Number of turns for L mH is $\mathrm{N}=x \backslash \mathrm{~L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.
Approximate weight
6.4 grams

Mean length of lines of force

$$
\mathrm{I}_{\mathrm{e}}=2.58 \mathrm{~cm}
$$

$$
\Sigma \frac{1}{\mathrm{~A}}=5.97 \mathrm{~cm}^{-1}
$$

Effective volume

$$
\mathrm{V}_{\mathrm{e}}=1.12 \mathrm{~cm}^{3}
$$

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | $3 \mathrm{B7}$ | 3 H 1 | 3D3 | $4 C 4$ |
| 25 | 11.9 | ± 1 | | | | K3 00608 |
| 40 | 19.0 | ± 1 | | | 432202205420 | K3 00509 |
| 63 | 30 | ± 1 | 432202205030 | | K3 00501 | 432202205030 |
| 100 | 47.5 | ± 1 | 432202205040 | | K3 00602 | |
| 160 | 76 | ± 1 | K3 00591 | K3 00581 | K3 00603 | |
| 250 | 119 | ± 1.5 | K3 00592 | K3 00582 | | |
| 315 | 149 | ± 2 | | K3 00584 | | |
| 400 | 190 | ± 2 | K3 00593 | K3 00583 | | |
| 630 | 298 | ± 3 | | K3 00585 | | |

A_{L} is the inductance per curn in nanohenry $\left(10^{-9} \mathrm{H}\right), \quad \mathrm{L}_{\mathrm{nH}}=\mathrm{N}^{2} \mathrm{~A}_{\mathrm{I}}$,
${ }^{2}$ For pre-adjusted potcores provided with the nut 432202130140 , the type number should be extended by the addition $/ 01$.

FERROXCUBE 3 \& 4

Pre-adjusted potcores of the μ_{e} range

Preferred types

| μ_{e} | $\chi_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | $3 \mathrm{H1}$ | $3 D 3$ | 4 C 4 |
| 15 | 162 | ± 1 | | | | K3 00347 |
| 22 | 134 | ± 1 | | | | 348 |
| 33 | 109.4 | ± 1 | | | K3 00341 | 349 |
| 47 | 91.7 | ± 1 | | | 342 | |
| 68 | 76.2 | ± 1 | K3 00321 | K3 00331 | 343 | |
| 100 | 62.8 | ± 1.5 | 322 | 332 | | |
| 150 | 51.3 | ± 2 | 323 | 333 | | |
| 220 | 42.4 | ± 3 | 324 | 334 | | |
| 330 | 34.6 | ± 3 | 325 | 335 | | |
| 720 | 23.4 | ± 25 | | | 340 | |
| 1840 | 14.6 | ± 25 | 320 | 330 | | |

Number of turns for L mH is $\mathrm{N}=\alpha \mathrm{l} \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.

| Approximate weight | | $12 \quad$ grams |
| :--- | ---: | :--- | :--- |
| Mean length of lines of force | I_{e} | $=3.15 \mathrm{~cm}$ |
| | $\Sigma \frac{\mathrm{I}}{\mathrm{A}}$ | $=4.97 \mathrm{~cm}^{-1}$ |
| Effective volume | V_{e} | $=2.00 \mathrm{~cm}^{3}$ |

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerances on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | 3 H 1 | 3D3 | $4 \mathrm{C4}$ |
| 40 | 15.8 | ± 1 | | | | K3 00728 |
| 63 | 25 | ± 1 | | | K3 00721 | K3 00729 |
| 100 | 39.5 | ± 1 | K3 00715 | | K3 00722 | |
| 160 | 63.5 | ± 1 | K3 00711 | K3 00701 | K3 00723 | |
| 250 | 99 | ± 1.5 | K3 00712 | K3 00702 | | |
| 400 | 158 | ± 2 | K3 00713 | K3 00703 | | |
| 630 | 249 | ± 3 | K3 00714 | K3 00704 | | |

A_{L} is the inductance per turn in nanohenry $\left(10^{-9} \mathrm{H}\right), \quad \mathrm{L}_{\mathrm{nH}}=\mathrm{N}^{2} \mathrm{~A}_{\mathrm{L}}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130150 , the type number should be extended by the addition /01.

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES-P26/16

Pre-adjusted potcores of the μ_{e} range.

Preferred types.

| μ_{2} | $\alpha_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 387 | 3 H 1 | 3D3 | $4 C 4$ |
| 15 | 146 | ± 1 | | | | K3 00287 |
| 22 | 120 | ± 1 | | | | 288 |
| 33 | 98.2 | ± 1 | K3 00261 | K3 00271 | K3 00281 | 289 |
| 47 | 82.3 | ± 1 | 262 | 272 | 282 | |
| 68 | 68.4 | ± 1 | 263 | 273 | 283 | |
| 100 | 56.4 | ± 1.5 | 264 | 274 | | |
| 150 | 46.1 | ± 2 | 265 | 275 | | |
| 220 | 38.1 | ± 3 | 266 | 276 | | |
| 330 | 31.0 | ± 3 | 267 | 277 | | |
| 730 | 20.8 | ± 25 | | | 280 | |
| 1910 | 12.9 | ± 25 | 260 | 270 | | |

Number of turns for $\mathrm{L} m \mathrm{~m}$ is $\mathrm{N}=\alpha \backslash \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.
Approximate weight

$$
\begin{aligned}
& 20 \quad \text { grams } \\
\mathrm{I}_{\mathrm{e}} & =3.76 \mathrm{~cm} \\
\mathrm{~V} \cdot \frac{\mathrm{I}}{\mathrm{~A}}= & 4.00 \mathrm{~cm}^{-1} \\
\mathrm{~V}_{\mathrm{e}} & =3.53 \mathrm{~cm}^{3}
\end{aligned}
$$

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerances on inductance (\%) | potcore assembly number ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | | |
| | | | 3B7 | 3 H 1 | 3 D 3 | $4 \mathrm{C4}$ |
| 63 | 20 | ± 1 | | | | K3 00668 |
| 100 | 31.8 | ± 1 | | | K3 00661 | K3 00669 |
| 160 | 51 | ± 1 | | | K3 00662 | |
| 250 | 79.5 | ± 1 | K3 00651 | K3 00641 | K3 00663 | |
| 400 | 127 | ± 2 | K3 00652 | K3 00642 | | |
| 630 | 200 | ± 3 | K3 00653 | K3 00643 | | |
| 1000 | 318 | ± 3 | K3 00654 | K3 00644 | | |

A_{L} is the inductance per turn in nanohenry $\left(10^{-9} \mathrm{H}\right), L_{\mathrm{nH}}=\mathrm{N}^{2} \mathrm{~A}_{\mathrm{L}}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130160 , the type number should be extended by the addition 101

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES-P30/19

Pre-adjusted potcores of the μ_{e} range
Preferred types.

| μ_{e} | $\alpha_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | |
| | | | 387 | $3 \mathrm{H1}$ | 3D3 |
| 33 | 89.2 | ± 1 | | | K3 00373 |
| 47 | 74.7 | ± 1 | | | K3 00371 |
| 68 | 62.1 | ± 1 | K3 00351 | K3 00361 | K3 00372 |
| 100 | 51.3 | ± 1.5 | K3 00352 | K3 00362 | |
| 150 | 41.8 | ± 2 | K3 00353 | K3 00363 | |
| 220 | 34.6 | ± 3 | K3 00354 | K3 00364 | |
| 330 | 28.2 | ± 3 | K3 00355 | K3 00365 | |
| 1990 | 11.5 | ± 25 | K3 00350 | K3 00360 | |
| 740 | 18.9 | ± 25 | | | K3 00370 |

Number of turns for L mH is $\mathrm{N}=\alpha \sqrt{ } \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.

| | | 34 | grams | | | | |
|---|---|---|---|---|---|---|---|
| Approximate weight | | | |
| Mean length of lines of force | | | |\quad| I_{e} | $=4.52 \mathrm{~cm}$ | |
| :--- | :--- | :--- |
| | $\Sigma \frac{\mathrm{I}}{\mathrm{A}}=3.30 \mathrm{~cm}^{-1}$ | |
| | | |
| Effective volume | V_{e} | $=6.19 \mathrm{~cm}^{3}$ |

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | |
| | | | $3 B 7$ | 3H1 | 303 |
| 100 | 26.2 | ± 1 | | | K3 00541 |
| 160 | 42 | ± 1 | | | K3 00542 |
| 250 | 65.5 | ± 1 | K3 00531 | K3 00521 | K3 00543 |
| 400 | 106 | ± 1.5 | K3 00532 | K4 00522 | |
| 630 | 165 | ± 2 | K3 00533 | K3 00523 | |
| 1000 | 263 | ± 3 | K3 00534 | K3 00424 | |
| 1600 | 420 | ± 3 | K3 00535 | K3 00525 | |

A_{L} is the inductance per turn in nanohenrys $\left(10^{-9} \mathrm{H}\right), \quad \mathrm{L}_{\mathrm{nH}}=\mathrm{N}^{2} \mathrm{~A}_{\mathrm{L}}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130160 , the type number should be extended by the addition /01, e.g. K3 005 41/10.

FERROXCUBE 3 \& 4

POTCORES OF THE P-SERIES-P36/22

Pre-adjusted potcores of the μ_{e} range Preferred types.

| μ_{e} | $\chi_{m H}$ | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | |
| | | | 387 | 3 H 1 | 3D3 |
| 33 | 79.7 | ± 1 | | | K3 00411 |
| 47 | 66.8 | ± 1 | | | K3 00412 |
| 68 | 55.6 | ± 1 | K3 00381 | K3 00391 | K3 00413 |
| 100 | 45.8 | ± 1.5 | K3 00382 | K3 00392 | |
| 150 | 37.4 | ± 2 | K3 00383 | K3 00393 | |
| 220 | 30.9 | ± 3 | K3 00384 | K3 00394 | |
| 330 | 25.2 | ± 3 | K3 00385 | K3 00395 | |
| 750 | 16.7 | ± 25 | | | K3 00410 |
| 2030 | 10.2 | ± 25 | K3 00380 | K3 00390 | |

Number of turns for L mH is $\mathrm{N}=\alpha \sqrt{ } \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.

| | | 74 | grams |
| :--- | ---: | :--- | :--- |
| Approximate weight
 Mean length of lines of force | $।_{\mathrm{e}}$ | $=5.32 \mathrm{~cm}$ | |
| | $\Sigma \frac{\mathrm{I}}{\mathrm{A}}$ | $=2.64 \mathrm{~cm}^{-1}$ | |
| Effective volume | V_{e} | $=10.7 \mathrm{~cm}^{3}$ | |

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerance on inductance (\%) | potcore assembly number ${ }^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | |
| | | | 387 | $3 \mathrm{H}^{\prime}$ | 3D3 |
| 160 | 33.6 | ± 1 | | | K3 00691 |
| 250 | 52.5 | ± 1 | K3 00681 | K3 00671 | K3 00692 |
| 400 | 84 | ± 1.5 | K3 00682 | K3 00672 | K3 00693 |
| 630 | 132 | ± 2 | K3 00683 | K3 00673 | |
| 1000 | 210 | ± 3 | K3 00684 | K3 00674 | |
| 1600 | 336 | ± 3 | K3 00685 | K3 00675 | |

A_{L} is the inductance per turn in nanohenry $\left(10^{-9} H\right), \quad L_{n H}=N^{2} A_{L}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130160 , the type number should be extended by the addition $/ 01$.

POTCORES OF THE P-SERIES-P42/29

Pre-adjusted potcores of the μ_{e} range.

Preferred types.

| μ_{e} | $\alpha_{m H I}$ | tolerance on
 inductance
 $(\%)$ | potcore assembly number ${ }^{1}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 78.4 | ± 1 | $3 B 7$ | ferroxcube grade | |
| 47 | 65.7 | ± 1 | - | - | |
| 68 | 55.0 | ± 1 | - | - | |
| 100 | 45.0 | ± 1.5 | K3 00421 | K3 00435 | |
| 150 | 36.8 | ± 2 | K3 00431 | | |
| 220 | 30.4 | ± 3 | K3 00422 | K3 00432 | |
| 330 | 24.8 | ± 3 | K3 00433 | K3 004 | |
| 2120 | 9.85 | ± 25 | K3 00420 | K3 00434 | |

Number of turns for L mH is $\mathrm{N}=\alpha \mathrm{L}$
The inductance will only be within the guaranteed limits if the winding space of the coil former is completely filled with the number of turns determining the desired inductance.

Approximate weight
Mean length of lines of force

\[

\]

Non-preferred types

| A_{L} | corresponding μ_{e}-value | tolerance on inductance (\%) | potcore assembly number ${ }^{\text {l }}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | ferroxcube grade | | |
| | | | $3 \mathrm{B7}$ | $3 \mathrm{H1}$ | 3B5 |
| 250 | 51 | ± 1 | K3 00741 | K3 00731 | K3 00751 |
| 400 | 81 | ± 1 | K3 00742 | K3 00732 | K3 00752 |
| 630 | 130 | ± 2 | K3 00743 | K3 00733 | K3 00753 |
| 1000 | 205 | ± 3 | K3 00744 | K3 00734 | K3 00754 |
| 1600 | 325 | ± 3 | K3 00745 | K3 00735 | K3 00755 |

A_{L} is the inductance per turn in nanohenry $\left(10^{-4} H\right), \quad L_{n H}=N^{2} A_{L}$
${ }^{1}$ For pre-adjusted potcores provided with the nut 432202130160 , the type number should be extended by the addition /01.

FERROXCUBE E-CORE-E20/10/5 (E20)

Preferred type

The dimensions are according to German specification D.I.N. 41295.

Ferroxcube grade
Approximate weight
3E1
Type number of E-core
56907 45/3E1

A transformer core can be built up by combining an even number of E-cores. A shape that is often chosen is the shell type transformer 20/20/5 composed of two cores type E 20/10/5.

shell type transformer

Dimensional quantities:
mean length of lines of force
effective volume

Electrical properties:

$$
\text { at } 1=0
$$

$$
\begin{array}{ll}
\mu_{\mathrm{e}} & =1650-2760 \\
\mathrm{~A}_{\mathrm{L}} & =1515-2520 \\
\alpha & \leq 25.7
\end{array}
$$

at $23+10^{\circ} \mathrm{C}$ between
15 and 30 gauss

$$
\mathrm{q}_{2-24-100} \leq \quad 7 \Omega \Omega\left(\mathrm{H}^{3 / 2} \cdot \mathrm{~mA}\right)
$$

Mechanical pressure at which the electrical properties are determined is 5.5 kg .
Number of turns for $L_{m H}: N=\alpha \sqrt{ }$.
The following E-core can be delivered with an air gap (ground in each E-core):

$$
\begin{array}{c|c}
\text { type number } & \text { air gap length in } \mathrm{mm} \\
\hline 5690746 / 3 \mathrm{E} 1 & 0.15 \pm 0.015
\end{array}
$$

FERROXCUBE 3 \& 4

Coil former for shell type transformer 20/20/5 (M20)

| type number | VA 901 01 |
| :--- | :---: |
| material | Philite |
| minimum window area in mm^{2} | 27 |
| mean length of turn in cm | 3.8 |
| approximate weight in grams | 0.5 |
| maximum temperature in ${ }^{\circ} \mathrm{C}$ | 130 |

The dimensions are practically according to German specification D.I.N. 41303.
The material is according to German specification D.I.N. 7708 Typ 31.5.

FERROXCUBE E-CORE-E30/15/7 (E30)

Preferred type

The dimensions are according to German specification D.I.N. 41295.
Ferroxcube grade
Approximate weight
3E1
Type number of E-core 56907 47/3E1

A transformer core can be built up by combining an even number of E -cores. A shape that is often chosen is the shell type transformer 30/30/7 composed of two cores type E 30/15/7.

shell type transformer

Dimensional quantities:
mean length of lines of force
effective volume

Electrical properties:

$$
\text { at } A=0
$$

30/30/7

$$
\begin{aligned}
\mathrm{I} & =6.69 \mathrm{~cm} \\
\Sigma \frac{\mathrm{I}}{\mathrm{~A}} & \approx 11.2 \mathrm{~cm}^{-1} \\
V_{\mathrm{e}} & =4.00 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\mu_{\mathrm{e}} & =1795-2990 \\
\mathrm{~A} & =2010-3350 \\
\alpha & \leq 22.3
\end{aligned}
$$

at $23 \pm 10^{\circ} \mathrm{C}$ between
15 and 30 gauss
q2-24-100
7 (S/H $\left.H^{3 / 2} \cdot m A\right)$

Mechanical pressure at which the electrical properties are determined is 11 kg .
Number of turns for $\mathrm{L}_{\mathrm{mH}}: N=\alpha \sqrt{\mathrm{L}}$.

The following E-cores with an air gap (ground in each E-core) can be delibered:

| type number | air gap length in mm |
| :--- | :---: |
| $5690748 / 3 E 1$ | 0.15 ± 0.015 |
| 432202034660 | 0.30 ± 0.015 |

Coil former for shell type transformer 30/30/7 (M30)

| type number | VA 901 11 |
| :--- | :---: |
| material | Philite |
| minimum window are in mm^{2} | 80 |
| mean length of turn in cm | 5.6 |
| approximate weight in grams | 1.3 |
| maximum temperature in ${ }^{\circ} \mathrm{C}$ | 130 |

The dimensions are practically according to German specification D.I.N. 41303.
The material is according to German specification D.I.N. 7708 Typ 31.5.

FERROXCUBE E-CORE-E42/21/15 (E42)

The dimensions are according to German specification D.I.N. 41295.

Ferroxcube grade
Approximate weight
3E1
Type number of E-core $5690749 / 3 E .1$

A transformer core can be built up by combining an even number of E-cores. A shape that is often chosen is the shell type transformer 42/42/15 composed of two cores type E 42/21/15.
shell type transformer
Dimensional quantities:
mean length of lines of force
effective volume

$$
\begin{aligned}
\mathrm{I}_{\mathrm{e}} & =9.70 \mathrm{~cm} \\
\Sigma \frac{1}{\mathrm{~A}} & =5.34 \mathrm{~cm}^{-1} \\
\mathrm{~V}_{\mathrm{e}} & =17.6 \mathrm{~cm}^{3}
\end{aligned}
$$

Electrical properties:

$$
\begin{array}{lrl}
\text { at } \mathrm{I}=0 & \mu_{\mathrm{e}} & =1910-3140 \\
\mathrm{~A}_{\mathrm{L}} & =4425-7380 \\
& x & \leq 15.0 \\
\text { at } 23 \pm 10^{\circ} \mathrm{C} \text { between } & & \\
15 \text { and } 30 \text { gauss } & \mathrm{q}_{2-24-100} & \leq 7 \quad \Omega /\left(\mathrm{H}^{2 / 7} \cdot \mathrm{~mA}\right)
\end{array}
$$

Mechanical pressure at which the electrical properties are determined is 28 kg .
Number of turns for $\mathrm{I}_{\mathrm{mH}}: N=\alpha \backslash \mathrm{L}$.
The following E-cores can be delivered with an air gap (ground in each E-core)

| type number | air gap length in mm |
| :---: | :---: |
| $5690750 / 3 \mathrm{E}$ | 0.25 ± 0.015 |
| $5690751 / 3 \mathrm{E} 1$ | 0.5 ± 0.015 |

Coil former for shell type transformer 42/42/15/(M42)

| type number | VA 901 21 |
| :--- | :---: |
| material | |
| minimum window area in mm^{2} | Philite |
| mean length of curn in cm | 178 |
| approximate weight in grams | 9.3 |
| maximum temperature in ${ }^{\circ} \mathrm{C}$ | 4 |

The dimensions are practically according to German specification D.I.N. 41303.
The material is according to German specification D.I.N. 7708 Typ 31.5.

FERROXCUBE $3 \& 4$

FERROXCUBE E-CORE-E55/28/21 (E55)

Preferred type

The dimensions are according to German specification D.I.N. 41295.

Ferroxcube grade
Approximate weight
Type number of E-core

3 E1
115 grams
K5 40125

A transformer core can be built up by combining an even number of E-cores. A shape that is often chosen is the shell type transformer 55/55/21 composed of two cores type E55/28/21.
shell type transformer
55/55/21

Dimensional quantities:
mean length of lines of force

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=12.3 \\
& \mathrm{~S} \frac{\mathrm{l}}{\mathrm{~A}}=3.48 \\
& \mathrm{~V}_{\mathrm{e}}=43.7 \\
& \mathrm{~cm}^{-1} \\
& \mathrm{~cm}^{3}
\end{aligned}
$$

effective volume

Electrical properties:
at $1=0$

$$
\begin{aligned}
\mu_{e} & =1950-3250 \\
A_{L} & =7050-11700 \\
\alpha & \leq 11.9
\end{aligned}
$$

at $25 \pm 10^{\circ} \mathrm{C}$ between
15 and 30 gauss

$$
\mathrm{q}_{2-24-100} \leq \quad 4 \quad \Omega /\left(\mathrm{H}^{3 / 2} \cdot \mathrm{~mA}\right)
$$

Mechanical pressure at which the electrical properties are determined is 55 kg .
Number of turns for $\mathrm{L}_{\mathrm{mH}}: N=x \sqrt{\mathrm{~L}}$.
G52

| type number | VA 90136 |
| :--- | :---: |
| material | Hostalene PPN |
| minimum window are in mm^{2} | 250 |
| mean length of turn in cm | 11.6 |
| approximate weight in grams | 9 |
| maximum temperature in ${ }^{\circ} \mathrm{C}$ | 100 |

FERROXCUBE E-CORE-E55/32/13 (E65)

Preferred type

The dimensions are according to German specification D.I.N. 41295.
Ferroxcube grade
Approximate weight 3E1

Type number of E-core
K5 40060
A transformer core can be built up by combining an even number of E-cores. Shapes that are often chosen are the shell type transformers 65/65/13 composed of two cores type E65/32/13, and 65/65/27 composed of four cores type E65/32/13.

shell type transformer

65/65/13 65/65/27

Dimensional quantities:
mean length of lines of force

| | $\Sigma \frac{1}{\mathrm{~A}}$ | $=5.51$ | $2.75 \mathrm{~cm}^{-1}$ |
| ---: | :--- | ---: | :--- |
| effective volume | V_{e} | $=39.1$ | $78.2 \mathrm{~cm}^{3}$ |

Electrical properties:
at $\rfloor=0$
at $23 \pm 10^{\circ} \mathrm{C}$ between 15 and 30 gauss

$$
\begin{aligned}
\mathrm{I}_{\mathrm{e}} & =14.7 \\
\Sigma \frac{\mathrm{I}}{\mathrm{~A}} & =5.51
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{e}}=39.1
$$

$$
78.2 \mathrm{~cm}^{3}
$$

$$
\begin{array}{rrrc}
\mu_{\mathrm{e}} & =1980-3290 & 1835-3050 \\
A_{\mathrm{L}} & =4500-7500 & 8400-14000 \\
\alpha & \leq & 14.9 & \leq 10.9
\end{array}
$$

Mechanical pressure at which the electrical properties are determined is 40 kg .
Number of turns for $L_{m H}: N=x i L$.

FERROXCUBE 3 \& 4

Coil former for shell type transformer 65/65/27 (M65)

| type number | VA 90131 |
| :--- | :---: |
| material | fuller board |
| minimum window area in mm^{2} | 394 |
| mean length of turn in cm | 15 |
| approximate weight in grams | 13 |
| maximum temperature in ${ }^{\circ} \mathrm{C}$ | 130 |

The coil former is according to German specification D.I.N. 41304 ; it is delivered in parts.

FERROXCUBE 3 \& 4

FERROXCUBE CROSS CORES - X22

These cores have been developed especially for transformers to be mounted on printed-wiring boards.
Two versions of core halves can be supplied:
(1) without an air gap, and
(2) with air gap. Standardised air gap lengths in each core half are: $0.02,0.05,0.15$ and 0.25 mm .
The material grades are ferroxcube $3 \mathrm{H} 1,3 \mathrm{E} 1$ and 4 C 4 .
When ordering, the desired core half should be indicated by its type number.
The numbers for separate core halves are:
K5 35190 for fxc $3 E 1$
K5 35192 for fxc 3 H 1
K5 35193 for fxc 4C4
They are supplied without air gap.
For the combination of two cross-core halves, chosen at random from a lot, the following properties are guaranteed at $25 \pm 10^{\circ} \mathrm{C}$.

| | \hat{B}
 (gauss) | frequency
 (kc/s) | K5 35190 | K5 35192 | K5 35193 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| μ_{e} | ≤ 1 | 4 | ≥ 1490 | ≥ 1440 | ≥ 98 |
| α | ≤ 1 | 4 | ≤ 17.5 | ≤ 17.8 | ≤ 68.0 |
| $\tan \delta$ | ≤ 1 | 4 | | $\leq 1.2 \times 10^{-6}$ | |
| μ_{i} | ≤ 1 | 100 | | $\leq 5 \times 10^{-6}$ | |
| | ≤ 1 | 2000 | | | $\leq 40 \times 10^{-6}$ |
| | ≤ 1 | 5000 | | | $\leq 60 \times 10^{-6}$ |
| | ≤ 1 | 10,000 | | | $\leq 100 \times 10^{-6}$ |
| $\mathrm{q}_{2-24-100}$ | $15-30$ | 4 | ≤ 6 | ≤ 1.8 | |

The mechanical pressure at which above mentioned values are determined is 12 kg .

The following X -core halves are available with an air gap:

| type number | | material |
| :---: | :---: | :---: |
| K5 352 53 | 3 H 1 | air gap length in mm |
| K5 352 50 | 3 H 1 | 0.02 ± 0.01 |
| K5 352 51 | 3 H 1 | 0.05 ± 0.015 |
| K5 352 52 | 3 H 1 | 0.15 ± 0.015 |

Approximate weight of two halves

$$
\begin{aligned}
& 12 \mathrm{grams} \\
& \mathrm{I}_{\mathrm{e}}=3.80 \mathrm{~cm}^{\mathrm{A}_{\mathrm{e}}}
\end{aligned}=1.23 \mathrm{~cm}^{2} .
$$

Mean length of lines of force
effective volume
This X -core meets the following specifications:
International: I.E.C
France: C.C.T.U. 06-10
Germany: D.I.N. 41299
COIL FORMER - X22

| type number | VA 901 54 |
| :--- | :---: |
| Material | reinforced polyester |
| Window area in mm^{2} | 33.5 |
| Mean length of turn in cm | 4.9 |
| Max temperature for dipsoldering during 5-6 sec in ${ }^{\circ} \mathrm{C}$ | 280 |
| Max working temperature in ${ }^{\circ} \mathrm{C}$ | 130 |
| Force for pulling out pins during | |
| 1 min ae $25^{\circ} \mathrm{C}$ in kg | ≥ 1.5 |
| Max test voltage $(50 \mathrm{c} / \mathrm{s})$ between | |
| pins during 2 min in $\mathrm{V}_{\mathrm{rms}}$ | 500 |

FERROXCUBE 3 \& 4

FERROXCUBE CROSS CORES - X 30

These cores have been developed especially for transformers to be mounted on printed-wiring boards. Two versions of core halves can be supplied:

1) without air gap
2) with air gap

Standardized air gap lengths in each core half are: $0.02,0.05,0.15$ and 0.25 mm .
The material grade is fxc 3 H 1
When ordering, the desired core half should be indicated by its type number. The type number for the separate core half without air gap is:

$$
\text { K5 } 35255 \text { for fxc } 3 \mathrm{H} 1
$$

For the combination of two cross-core halves, chosen at random from a lot, the following properties are guaranteed at $25 \pm 10^{\circ} \mathrm{C}$.

| | $\dot{\mathrm{B}}$
 (gauss) | frequency
 $(\mathrm{kc} / \mathrm{s})$ | type number $\mathrm{K}^{2} 35255$ |
| :---: | :---: | :---: | :---: |
| μ_{e} | ≤ 1 | 4 | ≥ 1525 |
| α | ≤ 1 | 4 | ≤ 15.9 |
| $\frac{\tan \delta}{\mu_{\mathrm{i}}}$ | ≤ 1 | 4 | $\leq 1.2 \times 10^{-6}$ |
| $\mathrm{q}_{2-24-100}$ | ≤ 1 | 100 | $\leq 6 \times 10^{-6}$ |

The mechanical pressure at which above mentioned values are determined is 25 kg .

The following X -core halves are available with an air gap:

| type number | material | air gap length in mm |
| :---: | :---: | :---: |
| K5 352 65 | 3 H 1 | 0.02 ± 0.01 |
| K5 352 66 | 3 H 1 | 0.05 ± 0.015 |
| K5 352 67 | 3 H 1 | 0.15 ± 0.015 |
| K5 352 68 | 3 H 1 | 0.25 ± 0.015 |

Approximate weight of two halves
38 grams
Mean length of lines of force
effective volume

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{e}}=5.58 \mathrm{~cm}_{\mathrm{A}} \\
&=1.14 \mathrm{~cm}^{2} \\
& \Sigma \frac{\mathrm{I}}{\mathrm{~A}}=4.90 \mathrm{~cm}^{-1} \\
& \mathrm{~V}_{\mathrm{e}}=6.36 \mathrm{~cm}^{3}
\end{aligned}
$$

This X -core meets the following specifications:
International: I.E.C.
France : C.C.T.U. 06-10
Germany : D.I.N. 41299

COIL FORMER - X30

FERROXCUBE 3 \& 4

FERROXCUBE CROSS CORES - X35

These cores have been developed especially for transformers to be mounted on printedwiring boards. Two versions of core halves can be supplied:

1) without air gap
2) with air gap

Standardized air gap lengths in each core half are: $0.02,0.05,0.15$ and 0.25 mm .
The material grade is fxc 3 H 1
When ordering, the desired core half should be indicated by its type number.
The type number for the separate core half without air gap is:
K5 35260 for fxe 3H1
For the combination of two cross-core halves, chosen at random from a lot, the following properties are guaranteed.

| | \bar{B}
 (gauss) | frequency
 $(\mathrm{kc} / \mathrm{s})$ | type number |
| :---: | :---: | :---: | :---: |
| μ_{e} | ≤ 1 | 4 | ≥ 1580 |
| α | ≤ 1 | 4 | ≤ 14.4 |
| $\frac{\tan \delta}{\mu_{\mathrm{i}}}$ | ≤ 1 | 4 | $\leq 1.2 \times 10^{-6}$ |
| $\mathrm{q}_{2-24-100}$ | ≤ 1 | 100 | $\leq 7 \times 10^{-6}$ |

The mechanical pressure at which above mentioned values are determined is 33 kg .

The following X -core halves are available with an airgap:

| type number | material | air gap length in mm |
| :---: | :---: | :---: |
| K5 35270 | 3 H 1 | 0.02 ± 0.01 |
| K5 35271 | 3 H 1 | 0.05 ± 0.015 |
| K5 35272 | 3 H 1 | 0.15 ± 0.015 |
| K5 35273 | 3 H 1 | 0.25 ± 0.015 |
| wo halves | | 58 grams |
| orce | $I_{\text {e }}$ | $=6.73 \mathrm{~cm}$ |
| | | $=1.64 \mathrm{~cm}^{2}$ |
| | $\Sigma \frac{1}{\text { A }}$ | $=4.10 \mathrm{~cm}^{-4}$ |
| | V | $=11.0 \mathrm{~cm}^{3}$ |

This X-core meets the following specifications:
International: I.E.C
France : C.C.T.U. 06-10
Germany : D.I.N. 41299

COIL FORMER - X85

Pre-adjusted types

Type S25/16

| type of potcore | application | grade of ferroxcube | effective permeability (μ_{e}) | number of turns for 1 mH (x) | tolerance on inductance (\%) | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S14/8 | pulse coils; transformers | 3 E 1 | 1230 | 21.4 | ± 25 | K3 00029 |
| | | 3B1 | 600 | 30.6 | ± 25 | 40 |
| | | 3B1 | 74 | 85 | ± 3 | 41 |
| | coils in filters and equalizers | 3B1 | 49 | 106 | ± 2 | 42 |
| | | 3B1 | 36 | 122.5 | ± 2 | 43 |
| | | 3B1 | 29.5 | 135 | ± 2 | 44 |
| | pulse coils; transformers coils in filters and equalizers | $4 \mathrm{B1}$ | 225 | 48.5 | ± 25 | K3 00030 |
| | | 4B1 | 55.6 | 94.4 | ± 3 | 31 |
| | | $4 \mathrm{B1}$ | 35.9 | 115.2 | ± 2 | 32 |
| | | 4B1 | 29 | 128.5 | ± 2 | 33 |
| | | 4B1 | 23.9 | 141.4 | ± 2 | 34 |
| | pulse coils; transformers coils in filters and equalizers | 4C1 | 128 | 64.5 | ± 25 | K3 00035 |
| | | 4 C 1 | 51.5 | 102 | ± 3 | 36 |
| | | 4 C 1 | 34.4 | 118 | ± 2 | 37 |
| | | 4 C 1 | 27.1 | 133 | ± 2 | 38 |
| | | 4C1 | 23.1 | 144 | ± 2 | 39 |
| S18/12 | transformers | 3 E 1 | 1700 | 19.1 | ± 25 | K3 00048 |
| | | 3B2 | 160 | 64 | ± 2.5 | 87 |
| | | 3B2 | 100 | 79 | ± 2 | 49 |
| | filter coils and chokes | 3B2 | 65 | 96 | ± 1 | 46 |
| | | 3B3 | 46 | 113 | ± 1.5 | 47 |
| | | 3B3 | 28.5 | 142 | ± 1.5 | 45 |
| S25/16 | chokes and transformers | 3E1 | 1860 | 14.2 | ± 25 | K3 00060 |
| | | 3B2 | 150 | 49 | ± 3 | 61 |
| | | 3B2 | 100 | 60 | ± 2.5 | 62 |
| | | 3B2 | 80 | 67 | ± 2 | 63 |
| | filter coils and chokes | 3B3 | 60 | 77.5 | ± 1.5 | 64 |
| | | $3 \mathrm{B3}$ | 45 | 89.4 | ± 1 | 65 |
| | | 3B3 | 20 | 134 | ± 1 | 66 |

POTCORES OF THE S-SERIES

Pre-adjusted types

| type of
 potcore | main application | grade of
 ferroxcube | effective
 permeability
 (μ) | number
 of turns
 for 1 mH
 (α) | tolerance on
 inductance
 $(\%)$ | type number |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |

HALF-CORE TYPES OF THE S-SERIES (preferred types)

These core halves are supplied only without an air gap.
Two parts are required for one complete core.

| core type | type number | core type | type number |
| :---: | :---: | :---: | :---: |
| S14:8-3B1 | 56580 06/3B1 | S25/16-3B2 | 56580 40/3B2 |
| -3E1 | K5 35125 | -3B3 | 56580 40/3B3 |
| | | -3E1 | K5 35000 |
| | | S35 /23-3B5 | K5 35020 |
| S18/12-3E2 | 56580 34/3B2 | -3E1 | K5 35021 |
| -3B3 | 56580 34/3B3 | | |
| -3E1 | K5 35066 | S45/25-3B5 | K5 35055 |
| | | -3E1 | K5 35056 |
| | | S66 56-3E1 | K5 35011 |

POTCORES OF THE D-SERIES

Still available, details on request

H-SERIES FOR MINIATURIZED TRANSFORMERS - MATERIAL GRADE $3 E 2$

According to the construction, two kinds of transformer should be distinguished:
those whose coils are wound around the core, and those where separately wound coils are applied to the core.

Toroidal transformers and items made of two-hole beads belong to the first kind, and E and U cores are used for the second one.
A toroid is the most simple form of a coil, and the absence of an air gap allows the full profit of the permeability. In the second case, well-defined windings can be made even automatically, and the wire leads can be directly connected to tags on the coil former.
When ferrites came into use, at first the existing core shapes were taken over, but soon round legs were introduced. Later on, also potcores were used for transformers. The printed-wiring technique led to arranging every component in a rectangular space. To utilize that space to the full, transformers should be designed so as to fill the entire space with core material, copper, insulating material and mounting parts, and this brought us to FXC cross and butterfly cores.

Fig. 1

Fig. 2

FERROXCUBE 3 \& 4

H-SERIES FOR MINIATURIZED TRANSFORMERS - MATERIAL GRADE $3 E 2$

Technical data

The overall dimensions and the pattern of connections of the three core types indicated above are shown in Figs 3, 4 and 5.

Fig. 3

Fig. 4

Fig. 5

The dimensions are valid for the cores assembled with the screening cans. If the requirements for the cross talk attenuation are moderate or low the cores may be used without screen.

Information for the calculation of transformers as well as typical examples of applications are supplied on request.

Assembly

As mentioned above, the number of component parts has been reduced to the bare minimum. With two parts in all a complete transformer can be produced ready for mounting on a printed circuit. The screening can (Fig. 8) for meeting severe cross talk requirements adds up to three parts:

1. $f \times \subset 3 E 2 H$-shaped part moulded in a coil former with terminals
2. fxc 3E2 rectangular window for the H 7 and H 10 core (Fig. 1 and 6) or a \cup-shaped part for the H 20 core (Fig. 2 and 7)
3. brass screening can

When the winding space has been used completely, it is advised to apply an insulating washer in the screen.

Fig. 6

Fig, 7

FERROXCUBE 3 \& 4

H-SERIES FOR MINIATURIZED TRANSFORMERS - MATERIAL GRADE 3E2

The assembly operation is very simple indeed:

1. wind the copper wire on the H part. For speeding up the soldering operation of the winding wire to the terminals, the use of self fluxing wire is advised. In case a terminal of the winding must be connected to the screening can it should be soldered to tag 1. The side of the coil former where the soldering tags protrude is asymmetrical providing a means for numbering the connections (see Fig. 6 and 7);
2. take care that the joining surfaces of the two core parts are clean and free from dust;
3. place the 0 part respectively \cup part on top of the H under slight pressure;
4. apply a suitable adhesive in the four corners of the H 7 and H 10 core near the contact surface of H and O , for the $\mathrm{H}-\mathrm{U}$ construction apply the adhesive around the joint of the assembled H and U . Remove the pressure after the curing of the adhesive.
The spots where the adhesive is to be applied should be degreased thoroughly.
As a suitable adhesive for instance Araldite, type D with harder type HY 951 may be used (1 part harder to 12.5 parts Araldite D).

The curing time should not be less than 15 hours at room temperature. This time may be shortened at higher temperatures. Reference should be made to the instructions issued by the manufacturers of adhesives.
5. in case a can is used (for H 10 see Fig. 8) place the core assembly in the can in such a way that the marked pin 1 is situated over the hole H in the bottom of the can (Figs. 6 and 7).
When the screen must be connected to earth fold-over the four ears and solder the longest ear to pin 1. When the screen must not be connected to

Fig. 8

Fig. 9

Fig. 10
earth before folding over, cut off approximately 1 mm from the longest ear.
When the screening can is properly placed on the assembled core, terminal 1 is located near hole H in the can (see Figs. 6 and 7); this facilitates the correct positioning of the transformer during assembling the equipment in which the transformer is used.
The coil former material withstands the usual dipsoldering temperatures.

H-SERIES FOR MINIATURISED TRANSFORMERS - MATERIAL GRADE $3 E 2$

Available types

| | | H7 | H10 | H2O |
| :---: | :---: | :---: | :---: | :---: |
| ($\Sigma 1 / \mathrm{A})$ core | $\left(\mathrm{cm}^{-1}\right)$ | 53 | 30 | 8.8 |
| (Σ / A A coil | $\left(\mathrm{cm}^{-1}\right)$ | 35 | 26 | 11.6 |
| A_{I} | $\left(\mathrm{nH} / \mathrm{H}^{2}\right)$ | min. 700 | min. 1,600 | min. 5,500 |
| Number of tags | | 6 | 8 | 8 |
| Tag distance | | 0.1" | 0.1" | 0.2 " |
| Area occupied | $\left(m m^{2}\right)$ | max. 10×7.4 | max. 12.4×11.2 | $\max .19 .9 \times 19.9$ |
| Height | (mm) | 4.4 | 6.2 | 15.2 |

| description | type | type number |
| :---: | :---: | :---: |
| complete assembly | H 7 | 432202033020 |
| complete assembly | H 10 | 432202033010 |
| complete assembly | H 20 | 432202033000 |

FERROXCUBE TOROIDS

Advantages of toroids over other shapes are:
a. small magnetic stray fie!d,
b. high μ-values.

They are very attractive for those applications in which small dimensions are required, such as broadband transformers and pulse transformers.

The toroids are barrel-finished and covered with an insulating lacquer.
Table I: Dimensional quantities, tolerances and weights.

| $\begin{gathered} E \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} d \\ (m m) \end{gathered}$ | $\begin{gathered} h \\ (\mathrm{~mm}) \end{gathered}$ | $\begin{gathered} I_{\mathrm{e}} \\ (\mathrm{~cm}) \end{gathered}$ | Σ_{A}^{1} $\left(\mathrm{cm}^{-1}\right)$ | $\begin{gathered} V_{\mathrm{e}} \\ \left(\mathrm{~cm}^{3}\right) \end{gathered}$ | weight
 (grams) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 ± 0.1 | 2.2 ± 0.1 | 1.1 ± 0.1 | 0.946 | 95.6 | 0.00937 | 0.045 |
| 6 ± 0.15 | 4 ± 0.15 | 2 ± 0.1 | 1.55 | 77.5 | 0.0310 | 0.15 |
| 9 ± 0.2 | 6 ± 0.2 | 3 ± 0.1 | 2.33 | 51.7 | 0.105 | 0.50 |
| 14 ± 0.3 | 9 ± 0.25 | 5 ± 0.15 | 3.55 | 28.5 | 0.445 | 2.14 |
| 23 ± 0.5 | 14 ± 0.35 | 7 ± 0.2 | 5.70 | 18.1 | 1.79 | 8.6 |
| 29 ± 0.5 | 19 ± 0.4 | 7.5 ± 0.2 | 7.50 | 20.1 | 2.58 | 13 |
| 26 ± 0.7 | 23 ± 0.5 | 10 ± 0.2 | 9.20 | 14.2 | 5.60 | 29 |
| 36 ± 0.7 | 23 ± 0.5 | 15 ± 0.2 | 9.20 | 9.42 | 8.50 | 44 |

Note: All dimensions apply to the not lacquered version.
Different series are available:
Series A: Ferroxcube grade 3E1
$\mu_{\text {tor }}=2700 \pm 20 \%$
green lacquered

Series B: Ferroxcuba grade 3H1
Sorted into μ groups
Orange lacquered

| dimensions (mm) | type number |
| :--- | :--- |
| $36 \times 23 \times 10$ | K3 00500 |
| $36 \times 23 \times 15$ | K3 00501 |
| $29 \times 19 \times 7.5$ | K3 00502 |
| | |
| dimensions (mm) | |
| $4 \times 2.2 \times 1.1$ | type number |
| $6 \times 4 \times 2$ | K3 00495 |
| $9 \times 6 \times 3$ | K3 00496 |
| $14 \times 9 \times 5$ | K3 00497 |
| $23 \times 14 \times 7$ | K3 00498 |

The colour of the circumference of the core indicates the μ group (see table II)

FERROXCUBE TOROIDS

Table II:

| group | $\mu_{\text {tor }}$ | colour of
 circum-
 ference | K3 00495 | K3 00496 | K3 004 97
 α-lactors | K3 004 98 | K3 00499 |
| ---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | $2000-2200$ | brown | 60.2 | 54.1 | 44.3 | 32.9 | 26.2 |
| 2 | $2140-2360$ | red | 58.3 | 52.3 | 42.8 | 31.8 | 25.3 |
| 3 | $2300-2540$ | orange | 56.0 | 50.3 | 41.2 | 30.6 | 24.4 |
| 4 | $2480-2740$ | yellow | 54.0 | 48.6 | 39.8 | 29.5 | 23.5 |
| 5 | $2680-2960$ | green | 51.8 | 46.6 | 38.2 | 28.3 | 22.6 |
| 6 | $2900-3210$ | blue | 49.9 | 44.8 | 36.7 | 27.3 | 21.7 |
| 7 | $3150-3480$ | violet | 48.0 | 43.2 | 35.4 | 26.2 | 20.9 |
| 8 | $3420-3780$ | grey | 46.2 | 41.4 | 34.0 | 25.2 | 20.1 |
| 9 | $3720-410$ | white | 44.2 | 39.7 | 32.5 | 24.1 | 19.2 |
| 10 | 24050 | black | 43.3 | 38.9 | 31.8 | 23.7 | 18.8 |

Number of turns for $\mathrm{L}_{\mathrm{mH}}: \mathrm{N}=\alpha \sqrt{\mathrm{L}}$
The μ groups are determined with the nominal $\Sigma \frac{1}{\mathrm{~A}}$ values (see table l)
The α factors of the groups 1-9 are average values, those of group 10 are maximum values.
D.F. at $23 \pm 1^{\circ} \mathrm{C} \leq 4.3 \times 10^{-6}$

Between +23 and $+70^{\circ} \mathrm{C}$ the $\mathrm{min} . \mu_{\text {tor }}$ of the product is greater than the min. $\mu_{\text {tor }}$ of the group.
The sorting into μ groups is done merely for the convenience of the user. The toroids are not available per separate group.

Series C: Ferroxcube grade 3E2
$\mu_{\text {tor }}>5000$
blue lacquered

| dimensions (mm) | |
| :---: | :---: |
| $4 \times 2.2 \times 1.1$ | type number |
| $6 \times 4 \times 2$ | 2 P 65329 |
| $9 \times 6 \times 3$ | 2 P 65331 |
| $14 \times 9 \times 5$ | 2 P 65333 |
| $23 \times 14 \times 7$ | 2 P 65334 |

Series D: Ferroxcube grade 4C4
$\mu_{\text {tor }}>100$
red lacquered

| dimensions (mm) | |
| :---: | :---: |
| $6 \times 4 \times 2$ | type number |
| $9 \times 6 \times 3$ | $2 P 65346$ |
| $14 \times 9 \times 5$ | $2 P 6547$ |
| $23 \times 14 \times 7$ | $2 P 6548$ |
| $36 \times 23 \times 15$ | $2 P 6549$ |

Note: It should be noticed that the properties of a toroid will deviate more from the material pro perties in proportion as its dimensions are smaller.
A straight-forward translation of the material figures is therefore not always possible.

FERROXCUBE 6 (square loop)

MAGNETIC MEMORY CORES

Ail data-handling systems employ some sort of device for the storage of information. Such a "memory" can accept, store and supply the information at any required moment. For this purpose a magnetic core memory is very often used.

The storage capacity of a magnetic core is the result of its property to assume either of two stable magnetic states. One magnetic state is maintained, until it is made to change into the other.
The main features which can be distinguished are as follows:

1. read/write cycle time of only a few microseconds;
2. random access;
3. the information can be stored for an indefinite period;
4. storage of large quantities of information in a small volume.

The properties of the cores described below are such that the cores are specially suitable for use in coincident current memories.
We draw your attention to the low temperature coefficient (LTC) cores, the electrical properties of which remain substantially constant over the entire range of operating temperatures.

CORE TYPES

```
150 mil - 6E1
    80 mil - 6B2
    50 mil - 6C1,6C2,6D5
    30 mil - 6F2,6F3,6F4
```

For more information see section B "Electronic building bricks for professional applications".

ULTRASONIC TRANSDUCER - MATERIAL GRADE 7 A2

Ultrasonics are more and more applied by all kinds of industries for cleaning and degreasing purposes. Notably watch makers, instrument makers, electron-tube manufacturers, and manufacturers and users of other small components that have intricate shapes or are difficult of access (e.g. hypodermic needles) consider ultrasonic cleaning to be superior to conventional methods. Recent tests showed that, whereas other methods resulted in removal of some 30 to 80% of the adhering dirt, ultrasonic cleaning removed up to 100% of the contamination. Larger machined parts may also be cleaned in this way, e.g. polished lenses and ball bearings, ground ceramic components, etc. In the iron industry ultrasonics can be used for de-rusting steel plates. Other ultra-sound applications are underwater detection (Sonar or Asdic, fishing aids), drilling, welding, destroying of cell membranes or bacteria, etc.
The ultrasonic vibrations are generated by the conversion of H.F. current through electroacoustic transducers. Usually the transducers consist of either piezoelectric or piezomagnetic materials. For piezomagnetic transducers a new grade of ferroxcube has been developed, namely 7A2.
Ferroxcube 7A2 tranducers are best suited for applications in which the temperature is not controlled. This is the case with many modern types of efficient cleaning equipment where the transducers are cemented outside a liquid-filled vessel.
The solid ferroxcube transducers excel by a very high electroacoustic efficiency. If properly mounted they may yield a value of 70 to 85%, whereas the efficiency of laminated metallic piezomagnetic transducers usually does not exceed 35%. This means that for a given acoustic output a smaller, simpler and consequently cheaper electric generator can be used and that the power consumption can be reduced by more than 50%.
The table on page G74 shows the nominal operating frequencies and the physical dimensions of a number of current types of ferroxcube transducers, those on pages G72 and G73 give the main electrical and acoustical properties.

FERROXCUBE 7

ULTRASONIC TRANSDUCERS - MATERIAL GRADE 7A2

Main properties of the transducers in FXC 7 A2

| (for drawings see page G74) | symbol | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| low-power data for free transducers | | | | | |
| type number | | 2P 64387 | 2P644 45 | K5 55005 | K5 55011 |
| ampere-turns required for maximum k on vergin magnetisation curve | $\left(\mathrm{nl} \mathrm{pol}^{\text {(}}\right.$ Opt | 230-350 | 150-240 | 150-230 | 100-150 |
| effective piezomagnetic coupling coefficient at optimum bias | ($\left.k_{\text {eff }}\right)_{\text {opt }}$ | 0.20-0.24 | 0.20-0.24 | 0.19-0.23 | 0.19-0.23 |
| open-circuit resonance frequency | f_{r} | 20.8-21.4 | 29.0-29.8 | 25.0-25.5 | 40.0-41.0 |
| short-circuit resonance frequency or frequency of maximum efficiency | $f_{\text {max }} \approx f_{a}$ | 21.4-21.9 | 29.8-30.5 | 25.6-26.0 | 41.0-41.8 |
| mechanical quality factor of free transducer core | $\left(Q_{\text {mech }}\right)_{\text {free }}$ | >2000 | >2000 | >2000 | >2000 |

high-power data for loaded transducers

\begin{tabular}{|c|c|c|c|c|c|}
\hline effective mechanical quality factor and equivalent electrical parallel resistance and parallel reactance of single-loaded-sub-merged ${ }^{3}$) transducer at frequency $f_{\text {max }}$ \& Q load
$$
\left.R_{p a r}{ }^{4}\right)
$$ \& $15-30$
$n^{2} .0 .012$

$n^{2} .0 .005$ \& $25-50$
$n^{2} .0 .015$

$n^{2} .0 .012$ \& $20-45$
$n^{2} .0 .006$

$n^{2} .0 .009$ \& $$
\begin{gathered}
20-45 \\
n^{2} .0 .015 \\
n^{2} .0 .022
\end{gathered}
$$

\hline | permissible rating of electric HF power of single-loaded submerged ${ }^{3}$) |
| :--- |
| transducer and corresponding acoustic intensity at the radiating surface | \& P

1 \& $150-180$
$1.4-1.7$ \& $120-150$
$1.6-2.0$ \& $40-50$
$3.0-3.5$ \& $30-35$
$3.0-3.5$

\hline effective mechanical quality factor and equivalent electrical parallel resistance and parallel reactance of transducer ce-ment-coupled to bottom of steel beaker frequency $f_{\text {max }}{ }^{6}$) \& \& \& \& \&

\hline permissible rating of electric HF power of single-loaded submerged and cementcoupled non-submerged eransducers and corresponding acoustic intensity at the radiating surface ${ }^{\text { }}$) \& P
J \& \& \& \&

\hline
\end{tabular}

[^61]
ULTRASONIC TRANSDUCERS - MATERIAL GRADE $7 A 2$

Main properties of the tansducers in FXC 7 A 2

| multiple
 Window
 (Fig. 3) | double dumb-bell
 with d.c. bias
 $2 \times($ Fig. 5) | glued double dumb-bell
 with ferroxdure biasing slabs
 (Fig. 4) | units |
| :---: | :---: | :---: | :---: | :---: |

high-power data for loaded transducers

| $\begin{array}{r} 20-35 \\ \mathrm{n}^{2} .0 .07 \end{array}$ | $\begin{gathered} 15-35 \\ n^{2} .0 .008 \end{gathered}$ | $\begin{gathered} 15-35 \\ n^{2} .0 .014 \end{gathered}$ | $\begin{gathered} 15-35 \\ n^{2} .0 .015 \end{gathered}$ | $\begin{gathered} 15-35 \\ n^{2} .0 .023 \end{gathered}$ | Ω |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n^{2} .0 .11$ | $n^{2} \cdot 0.011$ | $\mathrm{n}^{2} .0 .021$ | $n^{2} \cdot 0.008$ | $\mathrm{n}^{2} .0 .011$ | Ω |
| 100-120 | | | | | W (electric) |
| 2.5-3.0 | | | | | $\begin{gathered} \mathrm{W} / \mathrm{cm}^{2} \\ \text { (acoustic) } \end{gathered}$ |
| | 20-100 | 20-100 | 20-100 | 20-103 | |
| | $\mathrm{n}^{2} .0 .006$ | $\mathrm{n}^{2} \cdot 0.012$ | $\mathrm{n}^{2} \cdot 0.011$ | $\mathrm{n}^{2} .0 .021$ | Ω |
| | $\mathrm{n}^{2} .0 .011$ | $n^{2} \cdot 0.021$ | $\mathrm{n}^{2} \cdot 0.008$ | $\mathrm{n}^{2} \cdot 0.011$ | Ω |
| | $50-55$ $2.4-2.8$ | $30-35$ $2.7-3.2$ | $50-55$ $2.4-2.8$ | $30-35$ $2.7-3.2$ | W
 (electric) $\mathrm{W} / \mathrm{cm}^{2}$ (acoustic) |

[^62]
ULTRASONIC TRANSDUCERS - MATERIAL GRADE 7A2

Fig. 1.

Fig. 2.
Ferroncube 7A2

Fig. 4.

Fig. 3.

Fig. 5.

Current types of ferroxcube 7A2 transducers and biasing slabs

| fig. | weight
 (g) | $\begin{aligned} & \hline f_{\max } \\ & (k c / s) \end{aligned}$ | dimensions (mm) | | | | | | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | A | B | C | D | E | F | |
| | | | | | | | | | transducers |
| 1 | 490 | 21.7 | | 40 ± 0.5 | 73.5 ± 1.5 | 92 ± 1 | | | 2P 64387 |
| 1 | 380 | 30.2 | | 40 ± 0.5 | 49 ± 15 | 69 ± 1.5 | | | 2P 64445 |
| 2 | 490 | 25.8 | 96 ± 1 | 30 ± 1 | 62 ± 1.5 | 33.2 ± 0.8 | $9.4+0.8$ | | K5 55005 |
| 2 | 210 | 41.4 | 58 ± 1 | 30 ± 1 | 35 ± 1 | 24.6 ± 0.8 | $7.8+0.8$ | | K5 55011 |
| 3 | 1100 | 23.5 | 98 ± 2 | 20.0 ± 0.1 | 62 ± 1.5 | 24 ± 0.5 | 10.0 ± 0.2 | $7+1$ | 2P 64456 |
| 5 | 320 | 22.5 | 96 ± 1 | 40 ± 1 | 62 ± 1.5 | $4.2+1.6$ | 9.8 ± 0.2 | | K5 55016 |
| 5 | 80 | 42.1 | 50.4 ± 0.5 | 30 ± 1 | 32.4 ± 0.6 | $3.3+0.4$ | 7.0 ± 0.2 | | K5 55021 |
| 4 | 650 | 22.4 | $2 \times \mathrm{K} 555016+2 \times 2 \mathrm{C} 66705$ glued together with "Araldite" | | | | | | $\text { K3 } 04000$ |
| 4 | 170 | 41.7 | $2 \times \mathrm{K} 555021+2 \times \mathrm{K} 617600$ glued together with "Araldite" | | | | | | $\text { K3 } 04005$ |
| material; magnetised ferroxdure 250 K | | | $40 \times 16.6 \times 4.0 \mathrm{~mm}$ | | | | | | biasing slabs 2P 66705 |
| | | | for use with for use with | $\begin{aligned} & \mathrm{K} 555016 \\ & \text { K5 } 55021 \\ & \hline \end{aligned}$ | | $\begin{array}{r} 2 P 66705 \\ 617600 \\ \hline \end{array}$ | |

Conversion of parallel resistance and reactance into series resistance and reactance

Fig. 6.

Ferroxplana is a hexagonal ferrite suitable for high frequencies. The main properties are given below:

| | $\mathbf{1 Z 2}$ | $\mathbf{1 Z 3}$ |
| :---: | :---: | :---: |
| Initial permeability μ_{i} | 15 | 10 |
| $\frac{\tan \delta}{\mu_{\mathrm{i}}}$ at $50 \mathrm{Mc} / \mathrm{s}$ | 1.0×10^{-3} | - |
| 100 | 2×10^{-3} | 1.8×10^{-3} |
| 200 | 6×10^{-3} | - |
| 300 | - | 4×10^{-3} |
| 500 | - | 10×10^{-3} |
| temp. factor $\frac{1 \mu}{\mu^{2} 1 \mathrm{AT}}$ | 80×10^{-6} | 250×10^{-6} |
| spec. resistance $(\Omega \mathrm{cm})$ | 10^{6} | 10^{6} |
| frequency range $(\mathrm{Mc} / \mathrm{s})$ | $50-200$ | $200-500$ |

Preferred types in 1Z2:

Fig. 1

Fig. 2

| fig. | L
 $(m m)$ | D
 $(m m)$ | d
 $(m m)$ | H
 $(m m)$ | a
 $(\mathrm{~mm})$ | type number |
| :---: | ---: | :---: | :---: | :---: | :---: | ---: |
| 1 | 15 ± 0.4 | 8.5 ± 0.3 | 3.9 ± 0.2 | - | - | 312210491711 |
| 1 | 10 ± 0.6 | 4 | +0.6 | $2+0.4$ | - | - |
| 1 | 5 ± 0.3 | $4.6-0.6$ | $2+0.4$ | - | - | 91761 |
| 2 | 14 ± 0.5 | 8.25 ± 0.25 | $3.4+0.6$ | 14 ± 0.5 | 5.85 ± 0.25 | 432202069751 |

POWDER IRON

PIECE PARTS FOR SMALL IF-COILS
Main properties of the various grades of powder iron: 1P1, 1P2, 1P3, 2 P1.

| freq. range | material | measured on a small ring | μ_{i} | particle size |
| :--- | :---: | :---: | :---: | :---: |
| up to $10 \mathrm{Mc} / \mathrm{s}$ | 1 P 1 | 300 at $10 \mathrm{Mc} / \mathrm{s}$ | appr. 10 | $6-8 / \mu \mathrm{m}$ |
| up to $40-80 \mathrm{Mc} / \mathrm{s}$ | 1 P 2 | 350 at $30 \mathrm{Mc} / \mathrm{s}$ | appr. 8.5 | $4-6 \mu \mathrm{~m}$ |
| up to $40-80 \mathrm{Mc} / \mathrm{s}$ | $1 \mathrm{P}^{1}$ | 350 at $30 \mathrm{Mc} / \mathrm{s}$ | appr. 8.5 | $4-6 \mu \mathrm{~m}$ |
| up to $100 \mathrm{Mc} / \mathrm{s}$ | $2 P 1$ | | appr. 2.5 | |

I Only for cast parts

Fig. 1

Fig. 2

| dimensions (mm) | | | | fig. | material | type number |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | tol. | D | tol. | | | |
| 8 | ± 0.2 | 8 | -0.1 | 1 | 2 P 1 | 432202069511 |
| 31.7 | ± 0.2 | 18 | ± 0.2 | 2 | 1P1 | 432202069521 |

Fig. 3

Cores with tinned copper wire

| dimensions (mm) | | | | | | $f i g$. | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | tol. | 1 | tol. | D | tol. | | |
| 30 | +4 | 30 | ± 0.5 | 4.00 | -0.15 | 3 | A3 770 40/1P3 |
| 40 | +4 | 22 | ± 0.5 | 4.95 | -0.1 | 3 | A3 770 48,1P3 |
| 33 | +4 | 28 | ± 0.5 | 4.95 | -0.1 | 3 | A3 770 63/1P3 |

G76

PIECE PARTS FOR SMALL IF-COILS

Screw cores

| dimensions (mm) | | | | | | pitch (mm) | | | grade | fig. | type number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | tol. | D | tol. | a | α | S | total tol. | number of grooves | | | |
| 5 | ± 0.3 | 4.95 | -0.1 | | $\leq 85^{\circ}$ | 1.5 | 0.1 | 1 | 1 Pq | 1 | 312210491581 |
| 6 | ± 0.5 | 6.07 | -0.23 | | appr. 60° | 0.5 | | | 1 P 1 | 2 | 4 ¢22 02069501 |
| 8 | ± 0.3 | 4.95 | -0.1 | | $\leq 85^{\circ}$ | 1.5 | 0.2 | 4 | 1 P 2 | 4 | 312210491611 |
| 10 | ± 0.3 | 7 | | | $60^{\circ} \pm 10^{\circ}$ | 1 | 0.1 | 1 | 1 P 2 | 3 | 91591 |
| 12.25 | ± 0.3 | 4.95 | -0.1 | 1.3 ± 0.2 | $\leq 85^{\circ}$ | 1.5 | 0.2 | 5 | 1 P 2 | 6 | 91601 |
| 12.25 | ± 0.3 | 4.95 | -0.1 | 1.3 ± 0.2 | | 1.5 | 0.05 | 1 | 1 P 1 | 5 | 93141 |
| 12.25 | ± 0.3 | 4.95 | -0.1 | | $\leq 85^{\circ}$ | 1.5 | 0.2 | 5 | 1 P 1 | 4 | 90971 |
| 13 | -1.5 | | | | appr. 60° | 0.5 | | | 1P1 | 2 | 90991 |
| 15 | ± 0.3 | 4.95 | -0.1 | | $70^{\circ}+15^{\circ}$ | 1.5 | 0.1 | 5 | 1 P 1 | 1 | 92971 |
| 16.5 | ± 0.3 | 7 | -0.1 | 1.5 ± 0.3 | appr. 60° | 1.5 | 0.05 | 1 | 1 P 2 | 7 | 91001 |
| 16.5 | ± 0.3 | 7 | -0.1 | | $60^{\circ}+10^{\circ}$ | 1 | 0.1 | 1 | 1P2 | 3 | 91661 |
| 20.25 | ± 0.4 | 4.95 | -0.1 | | $\leq 85^{\circ}$ | 1.5 | 0.2 | 5 | 1P1 | 1 | 90981 |

Hard magnetic materials

PERMANENT MAGNETIC CERAMIC MATERIALS AND PERMANENT MAGNETIC CAST ALLOY

Magnetic properties and design data H 4
Application schedule H 8
Permanent magnetic ceramic materials
Ferroxdure - demagnetising curves H 9
Ferroxdure 330K and 360R H 12
Preferred type list
Plastic-bonded ferroxdure H 14
Anisotropic ferroxdure
Ring magnets for loudspeakers etc. H 15
Square magnets and blocks H 16
Slugs, discs H 17
Rings, segments H 18
Isotropic ferroxdure
Discs and bars H 19
Rings H 20
Blocks, blocks with hole H 22
Segments H 23
Permanent magnetic cast alloy
"Ticonal" (anisotropic) - demagnetising curves H 24
"Ticonal" 900, 750 and 650 H 25
Preferred type list Slugs H 27
Rods and rings H 28
Blocks, blocks with hole H 29
Special types H 29
Reco (isotropic) - demagnetising curves H 30

FERROXDURE - MAGNETIC PROPERTIES AND DESIGN DATA

| characteristics | ferroxdure | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | isotropic 100^{1} | anisotropic | | | |
| | | 250K | 300R | 330k | 360 R |
| Magnetic characteristics | | | | | |
| Max. energy . . . ($\times 10^{6} \mathrm{G} . \mathrm{Oe}$) min. | 0.9 | 2.5 | 3.1 | 3.1 | 3.4 |
| product (BH) max avg. | 0.95 | 3.0 | 3.3 | 3.3 | 3.6 |
| Remanence ${ }^{2} B_{r}$. (kG) min. ${ }^{3}$ | 2100 | 3400 | 3800 | 3600 | 3800 |
| avg. | 2200 | 3550 | 3900 | 3700 | 3900 |
| Coercivity ${ }^{2}$. . . . $\mathrm{H}_{\mathrm{c}}(\mathrm{Oe}) \mathrm{min} .{ }^{3}$ | 1600 | 2200 | 1600 | 2800 | 2000 |
| avg. | 1650 | 2500 | 1900 | 3000 | 2200 |
| Avg. static working condition | | | | | |
| $\mathrm{B}_{\mathrm{d}}(\mathrm{k} G)$ | 1000 | 1900 | 2000 | 1900 | 2000 |
| $\mathrm{H}_{\mathrm{d}}(\mathrm{Oe})$ | 950 | 1600 | 1650 | 1700 | 1800 |
| Permeability $\mu \mathrm{rev}$ ((G/Oe) | 1.112-1.118 | 1.08-1.15 | 1.08-1.15 | 1.08-1.15 | 1.08-1.15 |
| Field required for saturation | | | | | |
| $\mathrm{H}_{\text {sat }}(\mathrm{Oe})$ | 12000 | 10000 | 8000 | 12000 | 10000 |
| Curie temperature $\left({ }^{\circ} \mathrm{C}\right)$ | 450 | 450 | 450 | 450 | 450 |
| L/D ratio for open circuits | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Material characteristics | | | | | |
| Specific electrical resistivity, $\left(\Omega \mathrm{m}^{2} / \mathrm{m}\right)$ | $>10^{6}$ | 10^{8} | 10^{8} | 10^{8} | 10^{8} |
| Coefficient of thermal expansion $\left(0-100^{\circ} \mathrm{C}\right) \text {. }\left(\text { in } 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ | 8.5 | 15.0 | 10.5 | 15.0 | 10.5 |
| Specific gravity (g/cm³) | 4.9 | 4.8 | 5.0 | 4.9 | 5 |
| Manufacturing process | Processed materials pressed to the required shape in a die and sintered. | | | | |
| Machinability | Material cannot be machined | | | | |
| | Surface finishing by grinding | | | | |

[^63]
PERMANENT MAGNETIC CAST ALLOY

> RECO - MAGNETIC PROPERTIES AND DESIGN DATA

| characteristics | reco (isotropic) ${ }^{1}$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 100 | 120 | 140 | 160 | 170 | 220 |
| Magnetic characteristics | | | | | | |
| Max. energy . . ($\times 10^{\mathbf{6}} \mathrm{G}$. Oe) min. | 1.0 | 1.1 | 1.3 | 1.5 | 1.5 | 2.0 |
| product $(\mathrm{BH})_{\text {max }}$ mavg. | 1.2 | 1.3 | 1.4 | 1.65 | 1.65 | 2.3 |
| Remanence ${ }^{3} \mathrm{Br}_{\mathrm{r}}$. $k G$) min^{2}. | 5800 | 5300 | 6200 | 6000 | 5200 | 5600 |
| avg. | 6200 | 5900 | 6500 | 6600 | 5600 | 6300 |
| Coercivity H_{c}. (Oe) min^{2}. | 460 | 500 | 530 | 600 | 830 | 1100 |
| avg. | 480 | 600 | 565 | 680 | 890 | 1200 |
| Avg. static working condition | | | | | | |
| $\mathrm{B}_{\mathrm{d}}(\mathrm{k} G)$ | 4000 | 3100 | 3500 | 4150 | 3300 | 3750 |
| $\mathrm{H}_{\mathrm{d}}(\mathrm{Oe})$ | 300 | 400 | 400 | 400 | 500 | 600 |
| Permeability $1 \mathrm{rev} .(\mathrm{G} / \mathrm{Oe}$) | 4.0-6.5 | 4.4-5.0 | 5.0-6.0 | 4.0-5.0 | 3.4-4.0 | 3.2-3.8 |
| Field required for saturation | | | | | | |
| $\mathrm{H}_{\text {sat }}(\mathrm{Oe})$ | 2500 | 2500 | 2500 | 2500 | 3000 | 5000 |
| Curie temperature ${ }^{\circ} \mathrm{C}$) | 730 | 700 | 770 | 810 | 790 | 750 |
| L/D ratio for open circuits | 3.0 | 3.0 | 3.0 | 3.0 | 2.2 | 2.2 |
| Material characteristics | | | | | | |
| Specific electrical resistivity. . $\Omega / \mathrm{m}^{2} / \mathrm{m}$ | 0.7 | - | 0.75 | 0.65 | 0.60 | - |
| Coefficient of thermal expansion $\left(0-100^{\circ} \mathrm{C}\right)$. in $10^{-6} /{ }^{\circ} \mathrm{C}$ | - | 12.5 | - | 11.5 | - | - |
| Specific gravity $\mathrm{g} / \mathrm{cm}^{3}$) | 6.9 | 6.9 | 7 | 7 | 7 | 7.2 |
| Manufacturing process . | casting to the required shapes, hole cored at time of casting. | | | | | |
| Machinability | Material is brittle and cannot be machined Surface finishing by grinding | | | | | |

[^64]
PERMANENT MAGNETIC CAST ALLOY

"TICONAL" - MAGNETIC PROPERTIES AND DESIGN DATA

| characteristics | "Ticonal" (anisotropic) ${ }^{1}$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| | 450 | 650 | 750 | 900^{3} |
| Magnetic characteristics | | | | |
| Max. energy product $(\mathrm{BH})_{\max } \cdot\left(\times 10^{6} \mathrm{G} . \mathrm{Oe}\right) \mathrm{min}$. | 4.0 | 6.2 | 7.0 | 7.5 |
| avg. | 4.25 | 6.5 | 7.5 | 9.0 |
| Remanence ${ }^{2} B_{r}$. (kG) min. avg. | 8000 | 12800 | 13200 | 10000 |
| | 8500 | 13400 | 14200 | 10600 |
| $\text { Coercivity }{ }^{2} \mathrm{H}_{\mathrm{c}}$
 (Oe) min. avg. | 1200 | 640 | 720 | 1300 |
| | 1335 | 700 | 760 | 1400 |
| Avg. static working condition ${\underset{H}{d}}^{(\mathrm{Oe})} \mathrm{B}_{\mathrm{d}}(\mathrm{kG})$ | 5300 | 11000 | 10700 | 8000 |
| | 800 | 565 | 650 | 1100 |
| Permeability $\mu \mathrm{rev}$ (G/Oe) | 2.5-3.0 | 3-4 | 3-4 | 1.7-2.5 |
| Field required for saturation $\mathrm{H}_{\text {sat }}(\mathrm{Oe})$ | 5000 | 2500 | 2500 | 5000 |
| Curie temperature $\left.{ }^{\circ} \mathrm{C}\right)$ | 850 | 850 | 850 | 850 |
| L/D ratio for open circuits Material characteristics | 2.2 | 4.5 | 4.3 | 2.2 |
| | | | | |
| Specific electrical resistivity $\left(\Omega / \mathrm{m}^{2} / \mathrm{m}\right)$ | 0.50 | 0.45 | 0.45 | 0.5 |
| Coefficient of thermal expansion $\left(0-100^{\circ} \mathrm{C}\right) \text {. }\left(\text { in } 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ | 10.8 | 10.8 | 10.8 | 10.8 |
| Specific gravity $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | 7.3 | 7.3 | 7.3 | 7.3 |
| Manufacturing process | Casting to the required shapes, holes cored at time of casting. | | Casting to the required shape | |
| Machinability | Surface finishing by grinding | | | |

[^65]> PERMANENT MAGNETIC CAST ALLOY
"TICONAL" - MAGNETIC PROPERTIES AND DESIGN DATA

| characteristics | "Ticonal" (anisotropic) ${ }^{1}$ | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 190 | 360 | 400 | 500 | 600 |
| Magnetic characteristics | | | | | |
| Max. energy product. (BH $)_{\text {max }} \cdot\left(\times 10^{6} \mathrm{G} . \mathrm{Oe}_{\mathrm{m}}\right)_{\text {ming. }}^{\text {avg }}$ | 1.8 | 3.2 | 3.8 | 4.5 | 5.5 |
| | 2.1 | 3.6 | 4.0 | 4.8 | 5.77 |
| Remanence ${ }^{2} \mathrm{~B}_{\mathrm{r}}$. (kG)min. avg. | 7400 | 10500 | 11200 | 12300 | 13000 |
| | 8000 | 10700 | 11600 | 12800 | 13100 |
| Coercivity ${ }^{2} \mathrm{H}_{\mathrm{c}}$. (Oe)min. $\underset{\text { avg. }}{\text { avg }}$ | 650 | 680 | 610 | 600 | 630 |
| | 730 | 710 | 640 | 630 | 645 |
| Avg. static working condition.... ${\underset{H}{d}(\mathrm{Oe})}_{\mathrm{B}_{\mathrm{d}}(\mathrm{kG})}$ | 5000 | 7200 | 8000 | 9600 | 10500 |
| | 400 | 500 | 500 | 500 | 550 |
| Permeability $\mu \mathrm{rev}$ (G / Oe) | 3.8-5.0 | 4.0-5.0 | 4.0-5.0 | 4.0-5.0 | 3.0-4.0 |
| Field required for saturation $\mathrm{H}_{\text {sat }}(\mathrm{Oe})$ | 2500 | 2500 | 2500 | 2500 | 2500 |
| Curie temperature ${ }^{\circ} \mathrm{C}$) | 750 | 860 | 860 | 850 | 850 |
| L/D ratio for open circuits | 3.0 | 3.5 | 4.5 | 4.5 | 5.0 |
| Material characteristics | | | | | |
| Specific electrical resistivity. ($\Omega / \mathrm{m}^{2} / \mathrm{m}$) | - | 0.50 | 0.150 | 0.45 | 0.45 |
| Coefficient of thermal expansion $\left.\left(0-100^{\circ} \mathrm{C}\right) \text {. (in } 10^{-6} /{ }^{\circ} \mathrm{C}\right)$ | 11.5 | 10.8 | 10.8 | 10.8 | 10.8 |
| Specific gravity $\left.\mathrm{g} / \mathrm{cm}^{3}\right)$ | 7.0 | 7.3 | 7.3 | 7.3 | 7.3 |
| Manufacturing process | Casting to the required shapes, holes cored at time of casting. | | | | |
| Machinability | Surface finishing by grinding | | | | |

[^66]
APPLICATION SCHEDULE

| material | applications | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | L | D | G | W | W_{a} | 5 | M | Mi |
| Ferroxdure 100. | | - | | | | - | - | |
| Ferroxdure 250 K | | . | | | | | . | |
| Ferroxdure 300R | - | | | | | | - | - |
| Ferroxdure 330K | | - | | | - | - | . | |
| Ferroxdure 360R | - | | | | | | - | |
| "Ticonal" 190 | | | - | - | | | - | |
| "Ticonal" (C) 360 | | - | . | - | | - | - | |
| "Ticonal" (E) 400 | | - | - | - | | . | - | |
| "Ticonal" ($\times 450$ | - | - | - | - | - | | - | - |
| "Ticonal" (G) 500 | - | - | - | . | | - | - | . |
| "Ticonal" (Gg) 600 | . | . | . | . | | . | - | . |
| "Ticonal" 650 | . | - | . | - | | . | - | - |
| "Ticonal" 750 | . | | | | | | . | . |
| "Ticonal" 900 | | | - | | - | | | |
| Reco (1) 100. | | - | - | - | | - | | |
| Reco 120. | | - | - | - | | . | | |
| Reco (1A) 140. | | . | - | - | | . | | |
| Reco (2) 160. | | . | | . | | . | . | |
| Reco ($2^{\text {B }}$) 170. | | . | | - | | . | - | |
| Reco 220. | | . | - | - | | . | | |

L = loudspeakers
D = dynamos, generators
$G=$ galvanometers
$W=$ watt. hour meters
$W_{\mathrm{a}}=$ watches
$\mathrm{S}=$ sticking devices
$M=$ motors
$\mathrm{Mi}=$ microphones

PERMANENT MAGNETIC CERAMIC MATERIALS

FERROXDURE

Demagnetizing curves

N.B. The min. H_{n} curve for ferroxdure 250 K coincides with the min. B_{r} curve for ferroxdure 300R.

PERMANENT MAGNETIC CERAMIC MATERIALS

FERROXDURE

Electrical and mechanical characteristics

The mechanical properties of ferroxdure are similar to those of other ceramic material. Ferroxdure is hard and brittle and can only be machined by grinding with suitable discs of silicon or diamond. During grinding care must be taken to ensure that cooling is sufficient, to avoid cracks by local overheating.

Being a ceramic material ferroxdure is chemically rather inert. Its chemical resistance is characterised as follows:

Ferroxdure is not affected by:
sodium chloride in a 30% solution;
a mixture of benzol-trichlorine ethylene in a 50% solution;
petrol;
nitric acid;
nitric acid in a 50% solution;
acetic acid;
cresol;
phenolic solutions;
sodium sulphate solution;

Ferroxdure is hardly affected by:
delute sulphuric acid;
hydrochloric acid in a 50% solution;

Ferroxdure is rather strongly affected by:
concentrated hydrochloric acid.

PERMANENT MAGNETIC CERAMIC MATERIALS

FERROXDURE 330K, 360R

Type FXD330K has resemblance to type FXD250K, it has a higher induction and an appreciably higher maximum energy product $\mathrm{BH}_{\text {max }}$. The higher coercivity results in greater resistance to demagnetization.
In the majority of cases, it will be possible to insert the magnets magnetized. Furthermore, calculations can be based on the maximum energy product and so, designs having a minimum magnet volume can be obtained.

Type FXD360R has resemblance to type FXD300R has the same induction, but higher coercivity and a higher maximum energy product $\mathrm{BH}_{\max }$.
The low-temperature stability is improved proportionately and, if no considerable variations in temperature occur, a higher energy product (a wider angle of the load line) can be employed. The results will be:

- A reduced magnet volume for a given specification.

Application

No doubt, the advantages of the crystal-oriented material FXD330K will further stimulate the use of sandwich-type of sticking systems such as magnetic chucks. More in particular, however, it will be of importance for professional applications such as travelling-wave tubes, electronic watches, magnetos, alternators, generators, DC motors, clutches, filters, separators.
As a consequence of the superior reversibility, in many cases it will be possible to obtain - apart from simplified constructions - higher air-gap inductions (up to 30% higher values were observed). This will occur, for instance, when flat magnets - such as e.g. used for biasing magnetostrictive transducers of FXC7A - are mounted magnetized.
If these raised values are not required or cannot be effectuated - on account of e.g. saturated pole shoes - the cross section of the magnet may be reduced proportionately, thus leading to smaller and cheaper systems.
To obtain a homogeneous field in permanent-magnetic D.C. motors use is made of diametrically oriented rings, or diametrically or radially oriented segments. Apart from going a high flux, FXD330K allows the insertion of magnetized magnets as a consequence of the improved reversibility.
If magnets of FXD360R are magnetized in their system and if dismounting requirements are not imposed, a somewhat higher flux can be obtained than in the case of FXD330K.
For static applications in systems having a narrow air gap, FXD360R permits shorter magnets than FXD300R to obtain a given induction in the gap, if the other dimensions remain unchanged. Therefore, for a given specification, the use of FXD360R results in flatter magnet systems; this is of importance in the case a small system height is requested.

The temperature coefficient of induction and coercivity is the same for the new versions as for the older ones, but the load line may make a larger angle with the B-axis without the occurrence of magnetic losses after a transient cooling down.

Preferred type list

The preferred type list comprises the shapes and sizes of permanent magnets for which we already possess the dies or the moulding plates. We shall be glad to offer any other shape or size required within the technical possibilities.

PERMANENT MAGNETIC MATERIALS

PLASTIC-BONDED FERROXDURE

Recent developments in the field of permanent magnetic materials have led not only to improvements in the magnetic properties of existing grades, but also to the manufacturing of plastic-bonded magnets. These are made by mixing ferroxdure powder either with thermoplastic or with thermosetting materials and shaping them by one of the familiar plastic manufacturing techniques, such as extrusion - injection moulding - pressing.

These new permanerit magnetic materials, introduced as plastic-bonded ferroxdure, combine the characteristic magnetic properties of isotropic ferroxdure (albeit at a lower level) with the mechanical properties of the plastic materials used.

This opens the possibilities to obtain for example:

- flexible magnets, which can easily be cut, e.g. with a knife or scissors;
- magnets having close geometrical tolerances without need of machining them;
- magnets having intricate shapes;
- magnets which can easily be machined with normal tools;
- inexpensive magnets.

These features, combined with the low price of the materials used, offer the possibility of obtaining inexpensive magnets. They offer the opportunity to use magnets in those cases where this was impracticable in the past, either for technical or for price reasons; they may provide a cheaper solution in magnet applications already existing.
We can now offer the following three plastic-bonded ferroxdure permanent magnetic materials:
Ferroxdure P30 (Norm KPN-K-992) A soft, flexible and resilient material with 85 wt \% ferroxdure powder (M) $\mathrm{Fe}_{12} \mathrm{O}_{19}$ and $15 \mathrm{wt} \%$ thermoplastic material, shaped by extrusion or injection moulding.
Ferroxdure P40 (Norm KPN-K-989) A flexible material with 90 wt \% ferroxdure powder (M) $\mathrm{Fe}_{12} \mathrm{O}_{19}$ and $10 \mathrm{wt} \%$ thermoplastic material, shaped by extrusion or injection moulding in bars, strips, rods, and suchlike.
Ferroxdure D55 (Norm KPN-V-815) A hard and rigid material with 95 wt \% ferroxdure powder (M) $\mathrm{Fe}_{12} \mathrm{O}_{19}$ and $5 \mathrm{wt} \%$ thermosetting material, shaped by pressing. This material is magnetically superior to the flexible materials; moreover, close tolerances can be achieved without machining.

Magnetic Properties (measured in test pieces)

| | Fxd P30 | | Fxd P40 | | Fxd D55 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | min. | typical | min. | typical | min. | typical |
| Residual induction $\mathrm{Br}_{\mathrm{r}}(\mathrm{G})$ | 1150 | 1250 | 1350 | 1450 | 1650 | 1700 |
| Coercive field strength of the magn. ind. . $\mathrm{BH}_{\mathrm{c}}(\mathrm{Oe})$ | 1050 | 1100 | 1150 | 1200 | 1300 | 1400 |
| Coercive field strength of magnetisation. $\mathrm{IH}_{\mathrm{e}}(\mathrm{Oe})$ | 2500 | 2700 | 2300 | 2500 | 2500 | 2700 |
| External energy product . $\mathrm{BH}_{\max } \times 10^{6}$ (G.Oe) | 0.30 | 0.35 | 0.40 | 0.45 | 0.55 | 0.60 |
| Saturation induction $\mathrm{B}_{\text {sat }}(\mathrm{G})$ | 12000 | - | 12500 | - | 13500 | - |
| Saturation field strength $\mathrm{H}_{\mathrm{sat}}$ (Oe) | 10000 | - | 10000 | - | 10000 | - |
| Reversible permeability (recoil permeability) $\mu_{\text {rev }}$ | ~ 1.1 | - | ~ 1.15 | - | 1.15 | - |

ANISOTROPIC FERROXDURE 300R

Ring magnets for loudspeakers etc.
Preferred types

Direction of magnetisation: axial
Version: unmagnetised

| dimensions | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | | h | | |
| mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 36 | ± 0.8 | 18 | ± 0.5 | 8 | ± 0.1 | K6150 71 | 432202060071 |
| 38.5 | ± 0.6 | 23 | ± 0.5 | 9 | -0.1 | K615481 | 60381 |
| 40 | $\begin{aligned} & +1.3 \\ & -0.7 \end{aligned}$ | 15 | ± 0.4 | 7 | ± 0.1 | K6 15261 | 60081 |
| 40 | ± 0.9 | 22 | ± 0.5 | 9 | ± 0.1 | K615211 | 60091 |
| 45 | ± 1 | 22 | ± 0.6 | 8 | ± 0.1 | K615301 | 60101 |
| 45 | ± 1 | 22 | ± 0.6 | 9 | ± 0.1 | K615241 | 60111 |
| 45 | ± 1 | 22 | ± 0.6 | 10.5 | ± 0.1 | K6 15051 | 60121 |
| 45 | ± 1 | 24 | ± 0.6 | 8.5 | ± 0.1 | K615451 | 60411 |
| 45 | ± 1 | 24 | ± 0.6 | 9 | ± 0.1 | K615421 | 60131 |
| 48 | ± 1 | 18 | ± 0.5 | 10.5 | ± 0.1 | K6154 31 | 60141 |
| 51 | ± 1.2 | 24 | ± 0.6 | 9 | ± 0.1 | K615121 | 60151 |
| 51 | ± 1.2 | 24 | ± 0.6 | 10 | ± 0.1 | | 60031 |
| 55 | ± 1.2 | 24 | ± 0.6 | 8 | ± 0.1 | K6150 81 | 60161 |
| 55 | ± 1.2 | 24 | ± 0.6 | 12 | ± 0.1 | K615201 | 60171 |
| 60 | ± 1.5 | 24 | ± 0.6 | 8 | ± 0.1 | K6 15311 | 60181 |
| 60 | ± 1.5 | 24 | ± 0.6 | 12 | ± 0.1 | K615191 | 60191 |
| 60 | ± 1.5 | 24 | ± 0.6 | 13 | ± 0.1 | K615061 | 60201 |
| 60 | ± 1.5 | 30 | ± 0.7 | 10 | ± 0.1 | K615271 | 60211 |
| 60 | ± 1.5 | 30 | ± 0.7 | 13 | ± 0.1 | K615291 | 60221 |
| 68 | ± 1.5 | 32 | ± 0.7 | 13 | ± 0.1 | K615151 | 60231 |
| 72 | ± 1.5 | 32 | ± 0.7 | 15 | ± 0.1 | K6151 11 | 60241 |
| 72 | ± 1.5 | 40 | ± 1 | 13.7 | ± 0.1 | K6151 31 | 60251 |
| 73 | ± 2.2 | 31 | ± 0.9 | 10 | ± 0.1 | K615321 | 60261 |
| 84 | ± 1.8 | 32 | ± 0.9 | 15 | ± 0.1 | K615281 | 60271 |
| 90 | ± 1.8 | 36 | ± 0.9 | 17 | ± 0.15 | K615251 | 60281 |
| 96 | ± 2.4 | 40 | ± 1 | 25 | ± 0.15 | K6153 31 | 60291 |
| 102 | ± 3 | 51 | ± 1.5 | 10 | ± 0.15 | K615361 | 60301 |
| 102 | ± 3 | 51 | ± 1.5 | 14 | ± 0.15 | K615371 | 60311 |
| 121 | ± 3.6 | 57 | ± 1.7 | 12 | ± 0.2 | K615391 | 60321 |
| 134 | ± 4 | 57 | ± 1.7 | 14 | ± 0.2 | K615351 | 60331 |
| 134 | ± 4 | 57 | ± 1.7 | 14 | ± 0.2 | K6154011 | 60341 |
| 134 | ± 4 | 57 | ± 1.7 | 20 | ± 0.2 | | 60021 |
| 155 | ± 4.5 | 57 | ± 1.7 | 17.5 | ± 0.15 | | 60011 |
| 184 | ± 5.5 | 73 | ± 2.2 | 18.5 | ± 0.2 | K615341 | 60351 |
| 184 | ± 5.5 | 81.3 | ± 2 | 18.5 | ± 0.2 | | 60001 |

[^67]
PERMANENT MAGNETIC CERAMIC MATERIALS

ANISOTROPIC FERROXDURE 250K, 300R and 330K

Square magnets for loudspeakers

Direction of magnetisation: $\perp \mathrm{A} \times \mathrm{B}$ Version: unmagnetised

| dimensions | | | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | h | | diam. hole | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 30.6 | ± 0.8 | 30.6 | ± 0.8 | 5 | ± 0.1 | 12.4 | ± 0.4 | K613751 | 432202063011 |
| 32 | ± 0.8 | 26 | ± 0.6 | 8 | -0.1 | 15.5 | +0.8 | K617651 | 63091 |
| 41 | ± 1 | 41 | ± 1 | 8 | ± 0.1 | 15.5 | +0.8 | K613761 | 63041 |
| 50 | ± 1 | 50 | ± 1 | 10 | ± 0.1 | 26 | ± 0.6 | K6 17565^{1} | $63021{ }^{13}$ |
| 50 | ± 1 | 50 | ± 1 | 12 | ± 0.1 | 26 | ± 0.6 | | $63001{ }^{1}$ |

${ }^{1}$ Inner diameter provided with 2 slots.

Blocks

Preferred types

Material: see below
Direction of magnetisation: $\perp \mathrm{A} \times \mathrm{B}$ Version: magnetised

| dimensions | | | | | | material | trpe number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | H | | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | | old | new |
| 7 | ± 0.2 | 1.4 | ± 0.1 | 0.8 | ± 0.1 | 300R | | 432202062161^{2} |
| 5 | ± 0.2 | 5 | ± 0.2 | 4 | -0.2 | 300R | K6 17590 | 62021 |
| 7 | ± 0.3 | 7 | ± 0.3 | 4.2 | ± 0.05 | 250K | | 62001 |
| 15 | ± 0.3 | 9 | ± 0.5 | 5 | ± 0.25 | 250K | K6 17610 | 312210492701 |
| 20 | ± 0.5 | 10 | ± 0.5 | 5 | ± 0.1 | 250K | K6 17630^{2} | 432202062031 |
| 20 | ± 0.5 | 10 | ± 0.5 | 5 | ± 0.1 | 250K | K6 17640 | 62041 |
| 30 | ± 0.8 | 30 | ± 0.8 | 15 | ± 0.1 | 250K | K6 $176 \mathbf{2 0}^{2}$ | 62071 |
| 40 | ± 1 | 25 | ± 0.75 | 10 | ± 0.1 | 330K | | 62181 |
| 50 | ± 1.3 | 19 | ± 0.5 | 4.9 | -0.25 | 250K | K6 17530^{2} | 62091 |
| 50 | ± 1.3 | 19 | ± 0.5 | 4.9 | -0.25 | 250K | K6 17550 | 62101 |
| 50 | ± 1.3 | 19 | ± 0.5 | 6.1 | ± 0.1 | 250K | K6 17570^{2} | 62111 |
| 50 | ± 1.3 | 19 | ± 0.5 | 6.1 | ± 0.1 | 250K | K6 17580 | 62121 |
| 131 | ± 3 | 51 | ± 1.5 | 17.5 | ± 0.2 | 330 K | | $62141{ }^{2}$ |

[^68]H16

PERMANENT MAGNETIC CERAMIC MATERIALS

ANISOTROPIC FERROXDURE 250K, 300R AND 330K

Direction of magnetisation: axial
Version: magnetized
Slugs
Preferred types

| dimensions | | | | material | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | h | | | | |
| mm | tolerance | mm | tolerance | | old | new |
| 10 | ± 0.5 | 10 | ± 0.2 | 250K | K6038 00 | 432202061021 |
| 10 | ± 0.5 | 12 | ± 0.2 | 250K | K6 03810 | 61011 |
| 10 | ± 0.5 | 15 | ± 0.2 | 250K | | 61001 |

Discs

Material: see below
Direction of magnetisation: axial
Version: magnetised/unmagnetised (see below)

| dimensions | | | | material | version | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | h | | | | | |
| mm | tolerance | mm | tolerance | | | old | new |
| 5.5 | ± 0.05 | 1.8 | ± 0.03 | 330 K | unmagnetised | - | 432202062591 |
| 10 | ± 0.2 | 2 | ± 0.05 | 330 K | unmagnetised | - | 62502 |
| 10 | ± 0.5 | 4.6 | ± 0.1 | 250K | unmagnetised | - | 62581 |
| 12 | ± 0.3 | 6 | ± 0.25 | 300R | magnetised | K611275 | 62541 |
| 22.8 | -0.3 | 15 | -0.5 | 300R | unmagnetised | K6 11255 | 62571 |
| 28.8 | -0.3 | 12.5 | ± 0.5 | 250K | unmagnetised | - | 62511 |
| 40.6 | ± 1 | 9 | ± 0.1 | 250K | unmagnetised | K611265 | 62551 |
| 45 | ± 1.1 | 9 | ± 0.1 | 250K | unmagnetised | K607500 | 62561 |

PERMANENT MAGNETIC CERAMIC MATERIALS

ANISOTROPIC FERROXDURE 100

Rings (other than for Loudspeakers)
Preterred types

Material: see below
Direction of magnetisation: axial
Version: unmagnetised

| dimensions | | | | | | material | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | h | | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | | old | new |
| 20 | ± 0.2 | 5.15 | ± 0.15 | 4 | ± 0.1 | 300R | K615381 | 432202060041 |
| 24 | +0.08 | 10.2 | ± 0.3 | 4.05 | ± 0.1 | 250K | K615411 | 60052 |
| 30 | ± 0.6 | 12.7 | ± 0.5 | 6.35 | ± 0.05 | 250K | K615220 | ¢0051 |
| 42 | +2.3 | 10 | -0.5 | 8 | $+1.6$ | 250K | K615230 | 60391 |

Segments

Preferred types

Material: Fxd 300R
Direction of magnetisation: axial Version: unmagnetised

| dimensions | | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R | | A | | B | | $\begin{gathered} h \\ m m \end{gathered}$ | | |
| mm | tolerance | mm | tolerance | mm | tolerance | | old | new |
| 49 | $+10$ | 34 | ± 0.9 | 23 | ± 0.6 | 7.1 | K6 20010 | 432202061541 |
| 55 | +10 | 35 | ± 0.9 | 23 | ± 0.6 | 10.4 | K6200 05 | 61531 |

H18

PERMANENT MAGNETIC CERAMIC MATERIALS

ISOTROPIC FERROXDURE 100
Discs and bars
Preferred types
a) axiaily magnetised

| dimensions | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| diam. d | | h | | | |
| mm | tolerance | mm | tolerance | old | new |
| 3 | ± 0.2 | 7.5 | ± 0.25 | VK. 300.23 | 431202060131 |
| 4 | ± 0.2 | 3.5 | ± 0.2 | VK. 310.07 | 65951 |
| 5 | ± 0.3 | 10 | ± 0.5 | VK. 300.03 | 60021 |
| 5 | ± 0.2 | 20 | ± 0.5 | VK. 300.00 | 60001 |
| 5 | ± 0.3 | 30 | ± 0.8 | VK. 300.02 | 60011 |
| 5 | ± 0.2 | 39 | -1 | VK. 300.25 | 60101 |
| 5 | ± 0.3 | 50 | ± 1.0 | VK.300.22 | 60151 |
| 6 | ± 0.3 | 33 | ± 0.6 | VK. 300.17 | 60071 |

| dimensions | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| diam. ${ }^{\text {d }}$ | | h | | | |
| mm | tolerance | mm | tolerance | olf | new |
| 5.5 | ± 0.3 | 5 | ± 0.3 | VK. 310.09 | 431202065931 |
| 8 | ± 0.3 | 3 | ± 0.3 | VK 31011 | 65911 |
| 8 | ± 0.5 | 5 | ± 0.5 | VK 31006 | 65961 |
| 10 | ± 0.3 | 2.5 | ± 0.3 | VK 31005 | 65971 |
| 10 | ± 0.5 | 5 | ± 0.5 | VK 31008 | 65941 |
| 14 | ± 0.5 | 4 | ± 0.5 | VK 31012 | 65901 |
| 14 | ± 0.5 | 5 | ± 0.3 | VK 31013 | 65891 - |
| 14 | ± 0.3 | 10 | ± 0.5 | VK 31017 | 65831 |
| 20 | ± 0.35 | 5 | ± 0.3 | VK 31017 | 65881 |
| 25 | ± 0.5 | 5 | ± 0.4 | VK 31018 | 65871 |
| 32 | -1 | 8.7 | ± 0.3 | VK 31034 | 65811 |

b) diametrically magnetized

PERMANENT MAGNETIC CERAMIC MATERIALS

ISOTROPIC FERROXDURE 100
c) laterally magnetized

| dimensions | | | | type number | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | n | | old | | new |
| $m m$ | tol. | $m m$ | tol. | old | | |
| 14 | ± 0.5 | 5 | ± 0.3 | VK 31021^{1} | 431202065771 | |
| 20 | ± 0.4 | 3 | ± 0.3 | VK 310 362 | 65791 | |
| 25 | ± 0.5 | 5 | ± 0.4 | VK 310 232 | 65851 | |

' 2 poles on 1 face. : 6 poles on 1 face.

Rings

Preferred types

a) diametrically magnetised

| dimensions | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | square hole | | h | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 12.25 | ± 0.25 | 3.2 | ± 0.5 | 10 | ± 0.5 | VK 32006 | 431202062111 |
| 12 | $+0.5$ | 3.2 | ± 0.5 | 12 | ± 0.5 | VK 32007 | 62121 |

b) axially magnetised

| dimensions | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | h | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 11.9 | ± 0.4 | 5.75 | ± 0.25 | 6.5 | $\pm .05$ | VK 32019 | 431202062211 |
| 14 | ± 0.5 | 1.5 | ± 0.5 | 5 | ± 0.5 | VK 32016 | 62181 |
| 14 | ± 0.5 | 4 | ± 0.25 | 4 | ± 0.25 | VK 32018 | 62201 |
| 15.6 | ± 0.3 | 6.25 | ± 0.2 | 3 | -0.1 | VK 32003 | 62101 |
| 18 | ± 0.45 | 5 | ± 0.2 | 5 | ± 0.2 | VK 32012 | 62141 |
| 29.9 | -0.05 | 10 | ± 0.3 | 5 | -0.1 | VK 32110 | $62271{ }^{1}$ |
| 36 | -0.1 | 10 | ± 0.2 | 5 | -0.1 | VK 32118 | $62731{ }^{1}$ |
| 37 | ± 0.8 | 25 | ± 0.5 | 3.5 | ± 0.5 | VK 32106 | 62261 |

${ }^{1} 4 \mathrm{p}$ axially magnetised.
H2O

PERMANENT MAGNETIC CERAMIC MATERIALS

ISOTROPIC FERROXDURE 100
Rings
Preferred types (continued)
c) radially magnetised

| dimensions | | | | | | magnetisation | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | h | | | | |
| mm | tol. | mm | tol. | mm | tol. | | old | new |
| 13 | ± 0.3 | 5.3 | ± 0.2 | 8 | ± 0.3 | radially N pole on od | VK 32013 | 431202062151 |
| 13 | ± 0.3 | 5.3 | ± 0.2 | 8 | ± 0.3 | radially S pole on od | VK 32014 | 62161 |
| 18 | ± 0.5 | 12 | ± 0.5 | 7 | ± 0.5 | radially S pole on od | VK 32047 | 62251 |
| 27 | ± 0.7 | 20 | ± 0.6 | 3.5 | ± 0.5 | radially S pole on od | VK 32128 | 62341 |

d) laterally magnetised

| dimensions | | | | | | magnetisation | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | h | | | | |
| mm | tol. | mm | tol. | mm | tol. | | old | new |
| 24 | -0.05 | 10 | ± 0.5 | 21.25 | ± 0.45 | 8 p lat. on outer \varnothing | VK 37514 | 431202062471 |
| 24 | -0.04 | 12 | ± 0.3 | 12 | ± 0.4 | 16p lat. on outer \varnothing | VK 32130 | 62351 |
| 29.9 | -0.05 | 10 | ± 0.5 | 16.1 | ± 0.4 | 4 p lat. on outer \varnothing | VK 37518 | 62521 |
| 29.9 | -0.05 | 10 | ± 0.5 | 18.2 | ± 0.4 | 4 p lat. on outer \varnothing | VK 37523 | 62481 |
| 37 | ± 0.8 | 25 | ± 0.5 | 3.5 | -0.5 | 4 p lat. on one surface | VK 32142 | 62401 |

e) rings for couplings

| dimensions | | | | | | magnetisation | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| outer diam. | | inner diam. | | h | | | | |
| mm | tol. | mm | tol. | mm | tol. | | old | new |
| 48 | ± 0.05 | 30 | ± 0.05 | 12 | ± 0.1 | 14p lat. on outer \varnothing | VK 32124 | 431202062751 |
| 55 | ± 0.05 | 15 | ± 0.5 | 13 | ± 0.1 | 12p lat. on outer \varnothing | VK 32209 | 62431 |
| 72 | ± 0.05 | 52 | ± 0.05 | 12 | ± 0.1 | 14 p lat. on inner \varnothing | VK 32207 | 62791 |
| 78 | ± 1.5 | 58 | ± 0.05 | 13 | ± 0.1 | 12p lat. on inner \varnothing | VK 32208 | 62421 |
| 86 | +0.2 | 32 | ± 0.5 | 23 | ± 0.1 | 8 p lat. on outer ${ }^{\text {a }}$ | VK 32210 | 62441 |
| 120 | ± 0.5 | 96 | -0.2 | 23 | ± 0.1 | 8 p lat. on inner | VK 32300 | 62451 |

PERMANENT MAGNETIC CERAMIC MATERIALS

ISOTROPIC FERROXDURE 100

Blocks
Preferred types

magnetised $A \times B$

| dimensions | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | h | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 50 | ± 1.25 | 22 | ± 0.55 | 5 | ± 0.1 | VK 31202 | 431202066981 |
| 40 | ± 1 | 25 | ± 0.75 | 10 | ± 0.1 | VK 31210 | 66931 - |
| 40 | ± 1 | 17 | ± 0.4 | 4 | ± 0.1 | VK 31204 | 66971 |
| 28 | -0.5 | 13 | -0.5 | 3.5 | +0.5 | VK 31213 | 66751 |
| 15 | ± 0.5 | 15 | ± 0.5 | 5 | ± 0.3 | VK 31208 | 66951 |
| 8 | ± 0.5 | 8 | ± 0.5 | 5 | ± 0.5 | VK 31211 | 66771 |
| 10 | ± 0.5 | 5 | ± 0.5 | 3 | ± 0.5 | VK 31212 | 66761 |

Blocks with holes

Preferred types

magnetised
$A \times B$

| dimensions | | | | | | | | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | h | | D | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | mm | tolerance | old | new |
| 25 | ± 0.4 | 15 | ± 0.3 | 5.5 | ± 0.3 | 4.6 | ± 0.25 | VK 31220 | 431202066711 |
| 25 | ± 0.4 | 12 | ± 0.3 | 5 | ± 0.3 | 4.6 | ± 0.25 | VK 31221 | 66901 |

laterally magnetised

| dimensions | | | | | | magnetisation | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | H | | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | | old | new |
| 18 | ± 1 | 7 | ± 1 | 6 | ± 1 | 2 p lat. on 18×6 | VK 30301 | 431202066801 |
| 20 | ± 0.35 | 10 | ± 0.25 | 4 | ± 0.25 | 2 p lat. on 20×10 | VK 31214 | 66741 |
| 75 | ± 2 | 15 | ± 0.4 | 4 | ± 0.05 | 8 p lat. on 75×15 | VK 30302 | 66861 |

Segments
Preferred types
not magnetised

| old type number | VK $360 \mathbf{0 4}$ | | |
| :---: | :---: | :---: | :---: |
| new type number | $\mathbf{4 3 1 2 0 2 0 6 1 5 0 1}$ | | |
| | mm | tolerance | |
| dimensions | R | 54.55 | +2.5 |
| | A | 54 | ± 0.5 |
| | B | 27 | ± 0.3 |
| | s | 5.2 | +0.5 |
| | d | 7.4 | ± 0.2 |

PERMANENT MAGNETIC CAST ALLOY

ANISOTROPIC „TICONAL"

Demagnetizing curves

"Ticonal" grades are anisotropic alloys of special composition with high magnetic values in a preferred direction.
The method of production of the grades $360,400,500$ and 600 is similar. Compared with these types, grade 750 has a high degree of crystal orientation, resulting in a high energy product.
The energy product for type 650 is somewhat lower than for the 750 , but it exceeds the values of the older types. Particulars regarding the types 650 and 750 can be found on page H 26 .
For characteristics see also page H6.

PERMANENT MAGNETIC CAST ALLOY

MAGNETIC MATERIAL TICONAL GRADE 900

This magnetic material has been known for some years under the name of "TICONAL XX". In the meantime the material has been used in practice for some purposes and it is now produced in quantities under the name of "TICONAL 900".
The figure shows the average demagnetizing curve of the material together with upper- and lowerlimit curves.
Owing to the great coercive force of "TICONAL 900", the optimum length of the magnet will usually be very small. "TICONAL 900" can often be used with success in those cases where recourse had to be had to platinum-cobalt. It was therefore decided to discontinue the manufacturing of platinum cobalt.
The magnets are cube-shaped. For this reason the magnetic circuit should be designed accordingly.
"TICONAL 900" is economically only attractive for tiny magnets.
Note: In the near future the minimum garanteed values will be equal to the average values given in the graph.

PERMANENT MAGNETIC CAST ALLOY

ANISOTROPIC "TICONAL" - NEW MATERIALS

"Ticonal" 750

The optimum magnetic performance is attended with a circular cross section. Therefore, and to avoid expensive tooling-up, we standardized the following diameters:

$$
10 \mathrm{~mm}, 12 \mathrm{~mm},\left(1 / 2^{\prime \prime}\right), 14 \mathrm{~mm},\left(5 / 8^{\prime \prime}\right), 18 \mathrm{~mm} .
$$

The magnet length should be calculated according to the circuit to be used and the performance required.

We have to draw your attention to the fact that, in comparison with the older grades, the high energy product of "Ticonal" 750 is the result of a high degree of crystal orientation. The consequence is a typical demagnetization curve having a sharp knee just at the values B_{d} and $\mathrm{H}_{\mathrm{d}}\left(\mathrm{BH}_{\max }\right)$.

Therefore, the working line of a statically used magnetic circuit - without an external demagnetizing field - should intersect the BH curve in the $\mathrm{BH}_{\text {max }}$ point, or the results will be disappointing. That means, the use of "Ticonal" 750 would not lead to a higher performance or to a smaller magnet system than obtainable with e.g. "Ticonal" 600 or even "Ticonal" 500.

The material is also suitable for dynamic application incurring external demagnetizing fields.

"Ticonal" 650

"Ticonal" 650 is another interesting new crystal-oriented permanent-magnet material available on commercially attractive delivery terms. It may be used when, for some reason, the magnet for any of the above mentioned applications cannot be made from the outstanding grade "Ticonal" 750 .

The energy product guaranteed for " 650 " is somewhat lower than for " 750 " but it exceeds the minimum value for the next best grade, "Ticonal" 600 , by 12% and that for "Ticonal" 500 by even 36%.

Grade 650 has the essential advantage, that, compared with grade 750 , it is not subject to the restriction of a cylindrical shape. Nevertheless, holes should be avoided as well, because holes degrade the magnetic values as a result of disturbing the crystal orientation.

The nature of the material is such that the orientation should be straight and parallel to the axis of magnetization. Apart from cylinders, possible shapes are square bars and prismatic forms, which may have ground pole faces.

To ensure complete crystal orientation and optimum magnetic values, a geometric ratio length/diameter not in excess of 1 is recommended if the diameter does not exceed 15 mm .

For the rest, our statements on "Ticonal" 750 also apply to " 550 ". The knee in the demagnetization curve is less sharp.
For further data see page H6.

PERMANENT MAGNETIC CAST ALLOY

ANISOTROPIC "TICONAL" - 600 650, AND 750
Slugs (I)
Material: see below
Direction of magnetization: axial
Version: unmagnetized
Preferred types

| dimensions | | | | material | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | h | | | | |
| mm | tolerance | mm | tolerance | | old | new |
| 9.3 | -0.3 | 5 | -0.05 | "Ticonal" 750 | - | 432205975001 |
| 9.3 | -0.3 | 10 | -0.05 | "Ticonal" 750 | - | 75011 |
| 12.9 | -0.3 | 10 | -0.05 | "Ticonal" 750 | - | 75061 |
| 15.1 | -0.03 | 11.5 | ± 0.05 | "Ticonal" 750 | - | 75041 |
| 15.8 | -0.1 | 13.4 | ± 0.1 | "Ticonal" 750 | - | 75031 |
| 16.4 | ± 0.3 | 13.4 | -0.1 | "Ticonal" 650 | 3C 01033 | 65021 |
| 18 | -0.4 | 12 | -0.1 | "Ticonal" 600 | 3C 01018 | 60001 |
| 19.4 | ± 0.3 | 9.4 | ± 0.1 | "Ticonal" 750 | - | 75081 |
| 19.4 | ± 0.3 | 15.4 | -0.1 | "Ticonal" 650 | 3C 01032 | 65031 |
| 19.4 | ± 0.3 | 15.4 | ± 0.1 | "Ticonal" 750 | - | 75071 |
| 21 | ± 0.5 | 16 | ± 0.05 | "Ticonal" 600 | 3C 00745 | 60011 |
| 21 | ± 0.5 | 22.5 | ± 0.05 | "Ticonal" 600 | 3C 01030 | 60041 |
| 24.2 | -0.4 | 16 | ± 0.05 | "Ticonal" 600 | 3C 00996 | 60021 |
| 27.5 | ± 0.5 | 18.5 | ± 0.05 | "Ticonal" 600 | 3C 00746 | 60031 |

Slugs (II)
Preferred types

| dimensions | | | | | | material | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d1 | | d2 | | h | | | | |
| mm | tolerance | mm | tolerance | mm | tolerance | | old | new |
| 13.2 | -0.5 | 18 | -0.5 | 13 | ± 0.05 | "Ticonal" 600 | 3C 00744 | 432205960051 |
| 18 | -0.3 | 26 | ± 0.5 | 17.5 | ± 0.05 | 600 | 3C 01035 | 60061 |

PERMANENT MAGNETIC CAST ALLOY

ANISOTROPIC "TICONAL" - 400, 500 AND 600

Rods

Preferred types

Direction of magnetization: axial
Version: see below

| dimensions | | | | material | version | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d | | 1 | | | | | |
| mm | tolerance | mm | tolerance | | | old | new |
| 4 | ± 0.2 | 6 | ± 0.2 | "Ticonal'500 | unmagnetised | 3C 00980 | $432205950071{ }^{1}$) |
| 5 | ± 0.3 | 13 | ± 0.1 | 500 | unmagnetised | 3C 01016 | 50081 |
| 5 | ± 0.3 | 19.5 | ± 1 | 500 | magnetised | 3C 00982 | 50091 |
| 5.5 | -1 | 25 | ± 0.5 | 500 | magnetised | 3C 00124 | 50101 ${ }^{1}$) |
| 8.1 | -1 | 65 | ± 0.5 | 500 | magnetised | 3C002 36 | 50111 ${ }^{1}$) |

${ }^{1}$) Bars in these diameters can be supplied in any length between 8 and 100 mm .

Rings

Preferred types

| $\begin{aligned} & i \\ & i \end{aligned}$ | | $\frac{1}{9}+$ | | | | | Material: see below
 Direction of magnetisation: see below
 Version: see below | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| dimensions | | | | | | material | d / m | version | type number | |
| outer | diam. | inner | diam. | | h | | | | | |
| mm | tol. | mm | tol. | mm | tol. | | | | cld | new |
| 18.1 | -0.3 | 5 | +1 | 10 | -0.05 | "Ticonal" 600 | a | unmagnetised | 3C 01036 | 432205960071 |
| 30 | ± 0.5 | 7 | ± 0.5 | 25 | ± 0.2 | 400 | a | magnetised | 3C 00060 | 40001 |
| 56 | ± 0.5 | 48 | ± 0.5 | 10 | ± 0.5 | 400 | d | unmagnetised | 3H 71783 | 40011 |

$\mathrm{d} / \mathrm{m}=$ direction of magnetisation
d $=$ diametrical
a $=$ axial

PERMANENT MAGNETIC CAST ALLOY

ANISOTROPIC "TICONAL" - 400, 450, 500 AND 900

Blocks
Preferred types

Direction of magnetization: \perp face $A \times B$
Version: see below

| dimensions | | | | | | material | version | type number | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | | B | | C | | | | | |
| mm | tol. | mm | tol. | mm | tol. | | | oid | new |
| 2 | ± 0.05 | 2.25 | -0.03 | 2.6 | ± 0.05 | "Ticonal' 900 | unmagnetised | - | 432205990002 |
| 4 | ± 0.05 | 4 | ± 0.05 | 5 | ± 0.02 | ''Ticonal''900 | unmagnetised | - | 90011 |
| 8 | -1 | 5 | -0.4 | 14 | -1 | "Ticonal" 400 | magnetised | 3H 71736 | 40021 |
| 27 | -1 | 20 | ± 0.5 | 17 | ± 0.05 | "Ticonal" 450 | unmagnetised | 3C 00994 | 45031 |
| 21.5 | ± 0.5 | 14.5 | ± 0.5 | 22 | +0.2 | "Ticonal" 500 | magnetised | $3 C 00059$ | 50121 |
| 100 | ± 1 | 12 | ± 0.1 | 29.1 | ± 0.05 | "Ticonal" 500 | unmagnetised | 3C 00009 | $50131{ }^{1}$ |
| 22 | ± 0.3 | 9.1 | -0.4 | 40 | ± 0.1 | "Ticonal" 500 | magnetised | 3C 00840 | 50141 |
| 32 | ± 0.5 | 20.8 | ± 0.5 | 40 | ± 0.05 | "Ticonal" 500 | unmagnetised | 3C 00506 | 50151^{2} |
| 10 | ± 0.5 | 5 | ± 0.5 | 50 | ± 1 | "Ticonal" 500 | magnetised | 3C 00202 | 50161 |
| 40 | ± 0.05 | 17 | ± 0.3 | 10.5 | ± 0.2 | 'Ticonal'500 | unmagnetised | 3C 01046 | 50171 |

${ }^{1}$ with two mounting holes. " with one mounting hole.

Special types
(Please also consult our original drawings)

Old type number: 3C010.25 (unmagnetised) New type number: 432205910001
Material:"Recol"
Version: unmagnetised

Old type number: 3C009 72.1 (unmagnetised)
New type number: 432205940031
Material: "Ticonal" 400
Version: unmagnetised

PERMANENT MAGNETIC CAST ALLOY

RECO (ISOTROPIC)

Demagnetizing curves

Reco is a permanent isotropic magnetic cast alloy, the various types are distinguished by the different percentage of cobalt and titanium. The types 170 and 220 are characterized by their high coercivity.

Other Materials

Abstract

APPLICATIONS When considering the application possibilities for Peltier cooling, it should be kept in mind that all these cooling applications in principle can also be solved with compressors (together with additional provisions). Peltier cooling is preferable only in those cases where it offers definite technical or economical advantages. These may be e.g. the following ones: a. relatively low cooling capacity required, so that a standard compressor device is overdimensioned, and Peltier offers a cheaper solution. b. necessity for temperature constancy or temperature regulation, which with Peltier is much easier, cheaper and exacter than with compressors. c. smaller volume d. noiselessness e. no supervision required

In the following, a number of such application examples is given.

Measuring apparatus

1. Melting joint determination (-20 to $+80^{\circ} \mathrm{C}$). Here Peltier can act both as cooling and as heating medium. It easily permits melting point determinations down to lower temperatures, and moreover an easy and exact regulation. The melting can be either visually observed or found by a sudden change in a physical property e.g. the permittivity or the electrical resistivity.
2. Determination of freezing point depression. This is a customary method for the determination of molecular weight. Here Peltier cooling allows a higher precision, omission of the cooling bath and the possibility to repeat the freezing point determination several times without appreciable time loss.
3. Solidifying point and cloud point. This is particularly important for mineral and edible oils. Peltier allows a simpler cooling and a higher precision.
4. Dew point determination. By means of alternative Peltier cooling and heating, piloted by condensation of moisture upon a small mirror, a very quick and rapid determination of the dew point is possible, suitable for repeated moisture content measurements of gases, automatic moisture control, etc.
5. Zero grade standard. This can be easily and exactly realized by alternative Peltier cooling and heating in a small vessel of water. The Peltier battery can be piloted by using the sudden change in resistivity between water and ice. This zero grade standard can be used as reference temperature for the cold joint of thermocouples.
6. Flash point. This important property for mineral oils and fuels can be simply and accurately determined within a large temperature range by means of Peltier cooling, which above room temperature is commuted to Peltier heating. Any desired temperature-time curve can be realized in this way.
7. Cold resistance of oils. No bath cooling required; moreover better regulation and exactress.
8. Viscosity measurements at low temperature.

Material separation

9. Ice zone melting, for purification and separation of organic chemical substances in heterogeneous phase (solid-liquid). By means of Peltier devices, a low temperature ($-20^{\circ} \mathrm{C}$) can be reached, and easy regulation of temperature is possible. Moreover, heat and cold can be supplied at the same time, and the zone width adjusted.
10. Column crystallization. This is more or less the same procedure as ice zone melting, but on a continuous and industrial scale. For the use of Peltier, the same advantages apply.

PELTIER BATTERIES

APPLICATIONS (continued)

11. Thermodiffusion. This is a procedure for purification and separation of organic substances (e.g. proteins) in homogeneous liquid phase. When using Peltier, the required temperature can be adjusted easily, and exactly, the usable temperature range is extended towards the low temperature side, and heat and cold are supplied at the same time.
12. Gas chromatography, a separation method via the gas phase. The quantity of adsorbed matter can be increased by cooling the adsorbens. When this absorbens is afterwards heated by inverting the Peltier current, the adsorbed matter can be quickly driven out again. In this way, the sensitivity of the procedure can be increased and the required time shortened.

General laboratory technique

1. Small thermostat $\left(-20+80^{\circ} \mathrm{C}\right)$. By means of Peltier, a smaller and cheaper thermostat can be constructed for the indicated temperature range, which can e.g. serve for circulation cooling with organic chemical reactions or with dialysis processes.
2. Drying by freezing. With Peltier cooling, a small and handy device can be constructed for drying small quantities of liquid by freezing out the last moisture remains. This is a well-known technique in biological, biochemical and medical fields.
3. Cooling of suction filters, e.g. for recrystallizing. Again, with Peltier a small and easily adjustable device can be constructed, which can either heat or cool a suction filter in a short time.
4. Test tube cooler, for chemical or biological work. Peltier enables a small and handy device, easily adjustable and without need for supervision.

Miscellaneous

1. Keeping baths at constant temperature, e.g. for etching or staining purposes. Peltier allows a quick and exact adjustment.
2. Portable cooling box, for transport of temperature sensitive materials (blood plasma, vaccins, sperma).
3. Ultracentrifuge, where Peltier allows a quick and exact rotor cooling.
4. Automatic glass cutting. When glass is cut off by cracking, local Peltier cooling enables a very good and reproducible location of the crack, suitable for mass production.

Remarks

For all applications mentioned above the standard batteries PT 20/20, or PT 48/6 can be used. For some of them one battery will be sufficient, for others, e.g. the separation of different substances. the required cooling capacity can only be realized by using more batteries.

Dimensional drawing of Peltier battery PT 20/20. The length of the terminals without mounting tags is 240 mm .

characteristic data

Optimum working current: 20 A (water cooling of hot side required) Voltage at optimum working current: approx. 2 V Insulation resistance between plate surfaces and connecting cables: $>100 \mathrm{k} \Omega$
The given diagrams of cooling capacity and current versus temperature difference were measured for hot-side temperatures of 20 and $40^{\circ} \mathrm{C}$.

important notes

The battery should be fed by d.c. Adequate heat removal on the hot side should be provided; a short period of operation without cooling will cause destruction of the battery. The terminals on which the polarity is indicated, should never be reversed. For protection against oxidation the contact surfaces are provided with a protecting layer, which must be removed before use.

PELTIER BATTERIES

HIGH CURRENT TYPE PT 20/20

The Peltier-battery PT 20/20 is a 2 V cooling unit, which consists of a series connection of 20 semiconductor thermoelements made of bismuth telluride.

The unit is so designed that adequate insulation is ensured, so that the designer is free from the difficult problem of electric insulation. The easily accessible mounting holes permit easy mounting of heat exchangers or water containers, and facilitate fixing to a wall of a vessel. Mounting of the cooling unit can be done in any position. If a big cooling capacity is required, several units can be combined.

Cooling capacity and current versus temperature, measured for a warm-side temperature of $20^{\circ} \mathrm{C}$.
$T_{\mathrm{k}}=$ temperature of the cold plate.
$Q_{k}=$ cooling capacity in watts.

Cooling capacity and current versus temperature, measured for a warm-side temperature of $40^{\circ} \mathrm{C}$.
$T_{\mathrm{k}}=$ temperature of the cold plate.
$Q_{\mathrm{k}}=$ cooling capacity in watts.

PELTIER BATTERIES

HIGH CURRENT TYPE PT 20/20

TYPE PT 48/6

Spring nut (fits M3 screw)

The Peltier battery PT 48/6 is a cooling unit which is, because of its low current (max. 6A), very suitable for cooling purposes in which the cooling capacity must be controlled.

The unit consist of 48 (semiconductor) thermoelements made of bismuth telluride which are connected in series electrically. Adequate electrical insulation is ensured. The battery is very robust and is protected against humidity by means of a caoutchouc layer. It can be mounted in any position by means of the six additional M3 spring nuts.
A larger cooling capacity can be achieved by combining several batteries.
The battery is also available provided with one or two liquid containers, soldered to the warm and/or the cold side, with two terminals for rubber or plastic tubing.
The warm side of the battery is marked with a red stripe.

[^0]: ${ }^{1}$ Tolerance $\pm 150 \mathrm{kc} / \mathrm{s}$; ${ }^{2}$ tolerance $\pm 250 \mathrm{kc} / \mathrm{s}$; ${ }^{3}$ as V_{b} falls from 6 V to 4 V ; ${ }^{4}$ measured at a distance of 30 m ; ${ }^{5}$ measured at a distance of 3 m (IEC norm)

[^1]: ${ }^{1}$ Internal resistance of power supply $=250 \Omega$
 2 A beam current increase of $200 \mu \mathrm{~A}$ results in an amplitude increase of max. 2%.

[^2]: ${ }^{1}$ With 19 " tubes these rods are always necessary to get optimum raster shape.

[^3]: ${ }^{1}$ Improved performance such as: improved loadability, improved insensitivity to disturbing signals, improved applicability, improved economy, improved reliability.

[^4]: * no colour code

[^5]: ${ }^{1}$ Electronic elements replacing conventional electromechanical devices.

[^6]: Dimensions: 3 units, each $64 \mathrm{~mm} \times 42 \mathrm{~mm} \times 12 \mathrm{~mm}$

[^7]: ${ }^{1}$ Valid from 2.6 up till $4.4 \mu \mathrm{~s} .{ }^{2}$ At $2.3 \mu \mathrm{~s}$.

[^8]: Examples: The type number of a matrix plane with $4 \times 32 \times 32$ cores of Ferroxcube 6 F3 and wiring $1-1-4-4$, is $\mathrm{B} 862907 / \mathrm{M1}$.
 The type number of a stack containing 10 planes with 128×128 cores of Ferroxcube 6F2 with interconnection plane, is B8 $75824 / \mathrm{K} 510$.
 Stack height is determined by $(\mathrm{n}+2) 4.9+10 \mathrm{~mm}$.

[^9]: ${ }^{1}$ including temperature effect (-10 to $+50^{\circ} \mathrm{C}$) and load changes.
 ${ }^{2}$ at maximum operating temperature.

[^10]: ${ }^{1}$ The 4 tracks on $\frac{1}{2}^{*}$ tape is also available with 3 tracks plus a clock track. These heads can also be used interlaced, to obtain twice the number of tracks on the same tape width of $\frac{1}{2}{ }^{n}$.
 ${ }^{2}$ Can also be used interlaced.
 ${ }^{3}$ Heads with 6 microns gap available; 16 -track flying heads also available.

[^11]: ${ }^{1} 85^{\circ} \mathrm{C}$ with reduced ratings ${ }^{2}$ Wet aluminium

[^12]: ${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
 ${ }^{2}$ Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
 ${ }^{3}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^13]: ${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
 2 Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$

 - Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^14]: ${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
 2 Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
 ${ }^{9}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^15]: ${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minures
 2. Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$

 - Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^16]: ${ }^{1}$ Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
 ${ }_{2}^{2}$ Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
 ${ }^{3}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^17]: Maximum leakage current at $20^{\circ} \mathrm{C}$ after 5 minutes
 Maximum permissible ripple current at $100 \mathrm{c} / \mathrm{s}$
 ${ }^{3}$ Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^18]: ${ }^{1}$ Maximum Dermissible ripple current at $100 \mathrm{c} / \mathrm{s}$
 2 Maximum impedance at $20^{\circ} \mathrm{C}$ and $100 \mathrm{kc} / \mathrm{s}$

[^19]: Intermediate values according to the E12 range are available on request. The dimensions are identical to those of the next higher value in the standard E6 range. The capacitance tolerance is either $\pm 10 \%$ or $\pm 20 \%$. The preferred tolerance is $\pm 20 \%$ up to and including $0.22 \mu \mathrm{~F}$ and $\pm 10 \%$ from $0.33 \mu \mathrm{~F}$ onwards.

[^20]: ${ }^{1}$ See footnote p. C62.

[^21]: ${ }^{1}$ At cross-section of $38 \mathrm{~mm} \times 55 \mathrm{~mm}$

[^22]: ${ }^{1}$ These values are the capacitance values measured between the cerminals

[^23]: ${ }^{1}$ Preferred types
 ${ }^{2}$ Miniature version.

[^24]: 1 Preferred types

[^25]: ' The capacitance law of the oscillator section is adjusted to be within the stated colerance of the nominal value. At a rotation of α°, the tolerance is calculated from the sum of the total circuit capacitance at 10° and the capacitance swing between 10° and x°.
 2 The capacitance law of the aerial section is adjusted to the nominal value at a rotation of α°. This nominal value is obtained by adding to the measured total circuit capacitance of the oscillator section the nominal difference between aerial section and oscillator section. The tolerance is calculated on this sum.

[^26]: 1 Single-gang version only.

[^27]: ${ }^{1}$ Differential type only C001./.. version up to and including Cvar $=160 \mathrm{pF}$.
 ${ }^{2}$ For the differential version the C_{0} values are 1 pF less than the tabulated values.
 ${ }^{3}$ Between rotor and stator

 - Between the two stators

[^28]: ${ }^{1}$ For single-stator and differential types between rotor and stator; for split-stator type between two stators.

[^29]: ${ }^{1}$ Measured between the two stators

[^30]: 1 Measured between the two stators.

[^31]: ${ }^{1}$ Measured between the two stators.

[^32]: ${ }^{1}$ Values E24-series; ${ }^{2}$ ambient temperature.

[^33]: ${ }^{1}$ Resistance values: tolerance $\pm 5 \%$: E24 series; tolerance $\pm 10 \%$: E12 series; ${ }^{2}$ ambient temperature

[^34]: ${ }^{1}$ Resistance values: E24 series; ${ }^{2}$ ambient temperature.

[^35]: ${ }^{1}$ Resistance values: E24 series; ${ }^{2}$ ambient temperature

[^36]: Resistance values: E24 series; ambient temperature

[^37]: * Preferred resistance values

[^38]: Standard tolerance $\pm 20 \%$; $\pm 10 \%$ on request.
 Maximum temperature: $150^{\circ} \mathrm{C}$
 Stability: after 1000 hours at $W_{\max } \triangle R<5 \%$
 after 1000 hours at $\% / 3 W_{\max } \triangle R<3 \%$

[^39]: * For more information see dise thermistors series B (page E42).

[^40]: Resistance/temperature characteristic

[^41]: ${ }^{1}$ Defined as the temperature at which the resistance value is twice the value at $25^{\circ} \mathrm{C}$.
 2 Breakdown voltage.

[^42]: ${ }^{1}$) These measurements are based on a combination of the VDR and a coil. Full test conditions will be sent on request.

[^43]: ${ }^{1}$ The E 295ZZ/02 has an extra orange colour dot.

[^44]: 1 4-40NC-2B

[^45]: ${ }^{1}$ C,D, represents the minimum creeping distance betwean the live parts.

[^46]: a $=$ bottom in oil, lead-in directly connected to the mains
 $\mathrm{b}=$ bottom in oil, lead-in not directly connected to the mains
 $c=$ bottom in air (min. 700 mm mercury), lead-in directly connected to the mains
 d = bottom in air (min. 700 mm mercury), lead-in not directly connected to the mains.

[^47]: ${ }^{1}$ Silver plated; ${ }^{2}$ Gold plated; (一) BVA registration number; (p.w.) printed wiring version, 50 pcs

[^48]: ${ }^{1}$ Panel models (B and K models) are designed for the current indicated in parenthesis.

[^49]: ${ }^{1}$ Spindles are available in two lengths: 300 mm for 2 transformers, type number 432202608351
 450 mm for 3 transformers, type number 432202608361

[^50]: ${ }^{1}$ Serves co mount the motor drive on the transformer. The number of parts in the set depends on whether it concerns a single or a stacked transformer.
 ${ }^{2}$ Additional switches to rotate the transformer to certain pre-determined intermediace positions. Set 84538 contains two switches for the two extreme positions.
 s To calculate the rotation time (limit to limit) when using the $A \cup 5300 / 80$. series of gearboxes, multiply their gear reduction i by $1 / 50$, which yields the time in minutes.

[^51]: 1 Turn shaft end CW (clockwise) or CCW (counter-clockwise) to increase output voltage.
 ${ }^{2}$ This is the voltage drop from A to the slider C when C-B is loaded with $I_{\text {nom }}$.

[^52]: 'Preferred types

[^53]: ${ }^{\text {a }}$ Preferred types

[^54]: ${ }^{1}$ Preferred types

[^55]: 1 Preferred types

[^56]: ${ }^{1}$ For single hole beads see under tubes, page G. 14

[^57]: ${ }^{1} D_{2}=15.9 \pm 0.2$.

[^58]: ${ }^{1}$ Notches in back.

[^59]: ${ }^{2}$ For mounting on conventional panels as wellas on printed- wiring boards. For panel mounting use fixing bush B1 39185 and nut B1 43653.

[^60]: ${ }^{1}$ Preferred types

[^61]: ${ }^{1}$ The date on the transducers are expressed in terms of the total number of turns n, except those on the multiplewindow. They are expressed in terms of the number of turns per individual limb n.
 2 These transducers are supplied marked according to groups with narrow tolerance on f_{a}.
 ${ }^{s}$ The inside of a ring is the radiating surface, the outer surface is covered by cell-tight foam rubber. Window and multiple-window transducers are placed in water on a sheet of cell-tighc foam rubber, their limbs being covered by pressure-release material.

 - For conversion of parallel resistance and reactance into series resistance and reactance see Fig. 6.

[^62]: - The mechanical quality faccor and the electrical resiscance of a cement-coupled non-submerged transducer are highly dependent on the water level and on the geometry and material of the vessel. With only one transducer cement-coupled to a small vessel the resistance range may extend from $1 / 3$ to $5 / 3$ times the listed value. Much smaller tolerances, however, can be obtained when arrays of cement-coupled transducers are used (e.g. Iarge tanks).
 - The frequency of maximum efficiency of a cement-coupled transducer is slightly lower than that of the free (or submerged) transducer, because the tank wall represents an additional mass loading. A steel wall of 1 mm thickness usually causes a frequency decrease of 0.3 to $1.0 \mathrm{kc} / \mathrm{s}$.
 * These rating values presuppose a Qlaad not above 100 , otherwise they must be reduced inversely proportional.

[^63]: ${ }^{1}$ In ferroxdure 100, rods are extruded. Discs may be cut from rods which means that values may be a bit lower;
 ${ }^{2}$ Measured at room temperature $\left(20^{\circ} \mathrm{C}\right)$. ${ }^{3}$ It should be noted that the minimum values of B_{r} and H_{c} never occur simultaneously.
 Temperature coefficient. With ferroxdure 100 the effect of variations in temperature on the induction is practically reversible. Inother words, after temporarily heating or cooling, the starting point on the $B H$ curve is regained within 1 or 2 percent without remagnetization being necessary. Only after heating above the Curie point does permanent demagnetization occur. The same applies to anisotropic ferroxdure, but with this material care should be taken that when cooling the magnets below room temperature (which gives an increase of B and a decrease of H) the working point of the magnets does not pass the knee of the demagnetization curve. Orherwise a lower working point will be obtained after reheating to the original temperature (see leaflet "Ferroxdure Permanent Magnets"). The newer materials ferroxdure 360 R and 330 K are in this respect less sensitive due to the highercoercivity values, resulting in a favourable shift of the knee.

[^64]: ${ }^{1}$ Magnetic properties in all directions equal. ${ }^{2}$ It should be noted that the minimum values of B_{r} and H_{c} never occur simultaneously.

[^65]: ${ }^{1}$ Magnetic properties in the preferred direction optimal; ${ }^{2}$ It should be noted that the minimum values of Br and H_{c} never occur simultaneously; ${ }^{3}$ New material.

[^66]: ${ }^{1}$ Magnetic properties in the preferred direction optimal. ${ }^{2}$ It should be noted that the minimum values of B and H never occur simultaneously.

[^67]: ${ }^{1}$ Outer diamerer provided with 3 stors

[^68]: ${ }^{2}$ Magnets are not magnetised.

